首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The observational data base on the motion and evolution of comets and asteroids
Authors:Ľubor Kresák
Institution:(1) Astronomical Institute, Slovak Academy of Sciences, 84228 Bratislava, Czechoslovakia
Abstract:Current observational data base on the motion of comets and asteroids is reviewed. Particular attention is paid to the absolute and relative abundances of different dynamical types of objects, and to the time intervals between their first and last observations. The latter quantity, ranging from two days to two milliennia for individual objects, is the dominant measure of the accuracy of the orbit determination. Distribution of the tracking times of comets (distinguished by dynamical age: new, long-period, Halley type, Jupiter family) and asteroids (distinguished by stability: Apollos, Amors, main-belt asteroids, outer librators, outer unstable objects) are reconstructed. The peculiar shapes of individual distributions can be explained by the complex mechanisms of discoveries, rediscoveries, orbit computations, follow-up observations and backward identifications. A comparison is also made with the dynamical data base on meteoroids, as regards the accuracy of their orbits.The cumulative tracking times (170000 yr for all 7600 objects with known orbits taken together) are compared with the lifetimes and occurrence rates of different events of evolutionary significance. Only in the case of short-period comets the evolution is rapid enough to render observable a variety of important changes, ranging from drastic transformations of orbits to disruption or total outgassing. For asteroids, only minor cratering collisions which do not result in detectable changes of their orbits are covered by the whole observational history.Expected future improvements of observing and data-handling techniques are outlined. With these in view, the size and character of the data to become available by the end of this century are predicted. Dynamical types of objects, which are currently known in only one or a few examples, are pointed out. Apparently, other types of rare occurrence and short survival time still escape detection. A list of easiest targets of short-duration spacecraft missions is presented.The deficiencies of current statistics due to observational selection; the broad variety of regimes of motion occupied by widely differing proportional representations of the known objects; and demands for suitable targets of future spacecraft missions make it highly desirable to maintain the present rapid rate of augmentation of the data base for the years to come.Recent passages of two comets — 1983d IRAS-Araki-Alcock and 1983e Sugano-Saigusa-Fujikawa — near the Earth indicate that both the collision rate given in Table VIII and the contribution of long-period comets to it may have been slightly underestimated. The appropriate adjustment of the log-t values by less than — 0.10 has no effect of the general conclusions, however.The success of the orbiting observatory IRAS in detecting faint interplanetary objects lends better promises for the increase of the number of known objects (in particular comets) than anticipated in Section 6 and estimated in Table IX. Obviously, the outcome will largely depend on the implementation, time coverage and degree of exploitation of similar projects in the near future.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号