首页 | 本学科首页   官方微博 | 高级检索  
     

Softmax分类器深度学习图像分类方法应用综述
引用本文:万磊,佟鑫,盛明伟,秦洪德,唐松奇. Softmax分类器深度学习图像分类方法应用综述[J]. 导航与控制, 2019, 18(6): 1-9
作者姓名:万磊  佟鑫  盛明伟  秦洪德  唐松奇
作者单位:哈尔滨工程大学水下机器人技术重点实验室,哈尔滨150001;哈尔滨工程大学水下机器人技术重点实验室,哈尔滨150001;哈尔滨工程大学水下机器人技术重点实验室,哈尔滨150001;哈尔滨工程大学水下机器人技术重点实验室,哈尔滨150001;哈尔滨工程大学水下机器人技术重点实验室,哈尔滨150001
基金项目:国家自然科学基金(编号:51609050, 61633009);国家科技重大专项(编号:2015ZX01041101)
摘    要:
基于深度学习的人工智能图像分类方法研究是当前计算机视觉领域的研究热点。面向深度学习中的Softmax图像分类方法,首先回顾了图像分类技术的发展历程,接着介绍了图像识别技术中的分类器,并解释了Softmax回归函数的分类实现原理。基于Softmax回归分类器的应用,详细阐述了多种图像分类技术,具体包括浅层神经网络、深度置信网络、深度自编码器和卷积神经网络。同时,对比介绍了各种级联模型的具体结构、训练方法、实际应用、分类效果以及优缺点。最后,从Softmax回归分类器、深度学习网络模型和高维数据分类三个方面对基于Softmax回归分类器的深度学习模型在图像分类方面的发展与应用前景进行了展望。

关 键 词:图像分类  深度学习  Softmax回归  网络模型  分类器

Review of Image Classification Based on Softmax Classifier in Deep Learning
WAN Lei,TONG Xin,SHENG Ming-wei,QIN Hong-de and TANG Song-qi. Review of Image Classification Based on Softmax Classifier in Deep Learning[J]. Navigation and Control, 2019, 18(6): 1-9
Authors:WAN Lei  TONG Xin  SHENG Ming-wei  QIN Hong-de  TANG Song-qi
Affiliation:Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001,Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001,Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001,Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001 and Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001
Abstract:
The research on artificial intelligence image classification methods based on deep learning is a hotspot in the computer vision field. Aiming at the Softmax image classification method in deep learning, the development of image classification technology is firstly reviewed in this paper. Then, the classifiers in image recognition technology are introduced and the classification principle of Softmax regression function is given. Furthermore, several image classification techniques based on the application of Softmax regression classifier are described in detail, including shallow neural network, deep belief network, deep autoencoder network and convolutional neural network. Simultaneously, the concrete structure, training method, practical application, classification effect, advantages and disadvantages of above four cascade models are introduced. Finally, the development and application prospects of the deep learning model based on Softmax classifier in image classification are prospected from three aspects: Softmax regression classifiers, deep learning network model and high-dimensional data classification.
Keywords:image classification   deep learning   Softmax regression   network model   classifier
本文献已被 万方数据 等数据库收录!
点击此处可从《导航与控制》浏览原始摘要信息
点击此处可从《导航与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号