首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Planetary landings with terrain sensing and hazard avoidance: A review
Institution:Space Exploration Sector, Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723, USA
Abstract:The site selection and certification processes for planetary landers equipped with hazard avoidance capability are reviewed. The prior (large-scale) ‘landability’ of the target areas determined from orbital remote sensing can be only a few tens of per cent (~40 % for Perseverance, ~80–90 % for Apollo 11 and 60–70 % for subsequent Apollo landers) because on-board sensing is able to find safe areas at smaller scales (meters to tens of meters) than the delivery ellipse which may be several to several tens of kilometers across. This contrasts with the ‘blind’ landings of unguided missions, where safe terrain occupying 95–99 % of the landing ellipse are typically sought. The particulars of Apollo 11 and Perseverance/Ingenuity are discussed, together with the similar Chang-E-3 and Tianwen-1 Moon and Mars landers, and the Hayabusa-2 and OSIRIS-REx asteroid contacts, since these missions all used on-board terrain-relative navigation to steer relative to hazards either mapped previously or detected in real-time. These missions set the context for the application of these techniques to the Dragonfly mission to Titan, which has a more austere remote sensing basis on which to select a landing site, but whose rotor propulsion allows substantial divert capability.
Keywords:Planetary exploration  Hazard Detection  Landing Safety  Guidance  Terrain
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号