首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparative evaluation of five global gravity models over a part of the Bay of Bengal
Institution:1. Oil and Natural Gas Corporation (ONGC), Dehradun 248003, India;2. Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
Abstract:Several global gravity models (GGMs) are freely available in the public domain, which can be utilised to study the earth's gravity field in almost every part of the globe. The present study compared the free-air gravity anomalies calculated from the five GGMs EGM2008, EIGEN6C4, GECO, XGM2019e_2159, and SGG-UGM-2 archived by the International Centre for Global Earth Models (ICGEM) with respect to shipborne gravity in the Bay of Bengal. The average correlation coefficient and covariance are ~ 96 % and ~ 450mGal2. The mean difference between the shipborne and the modelled gravity is ? 5 mGal. Relatively higher amplitude gravity differences observed at the continental-oceanic transition, the 85°E and Ninetyeast ridges, and the western basin are possibly due to high gradient, dominant density contrasts, and rugged topography. The average standard deviation and root-mean-square-error (RMSE) of the differences are ~ 6.5 mGal and ~ 7.5 mGal. A significantly lower standard deviation and RMSE found for the models generated at higher degree/order compared to lower degree/order is due to diminishing omission error of the GGMs with increasing degrees of truncation. The spectral analysis and coherence estimation of the modelled gravity demonstrate excellent correspondence for anomalies wider than ~ 25 km. The agreement between anomaly amplitudes and shapes and calculated statistics indicates that the accuracy and resolution of the modelled gravity data are certainly good enough for regional-scale studies aiming to map Moho topography and mantle structures. However, the delineation of shorter wavelength features originating from the shallow-level basement/sedimentary might be uncertain and requires further validations. The present study confirms that all five models show promising results in terms of their accuracy and resolution. Moreover, the SGG-UGM-2 and XGM2019e_2159 models compare favourably with respect to the GECO, EIGEN6C4 and EGM2008 models in the Bay of Bengal.
Keywords:Global gravity-field models  Validation  Spectral analysis  Coherence  Bay of Bengal
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号