首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
BP神经网络反演核事故源项中重要参数的研究
引用本文:
侯闻宇 凌永生 赵丹等. BP神经网络反演核事故源项中重要参数的研究[J]. 南京航空航天大学学报, 2015, 47(5): 778-784
作者姓名:
侯闻宇 凌永生 赵丹等
作者单位:
南京航空航天大学材料科学与技术学院
摘 要:
核事故发生时,可靠、准确的源项信息能为应急防护行动措施决策提供数据支持。采用Matlab软件神经网络工具箱可以实现基于BP神经网络的核事故源项反演,为提高核事故源项反演计算的准确度,针对反演时的几个重要参数进行研究,包括隐含层节点数、训练函数、学习率和隐含层数。研究结果表明,在单隐含层神经网络结构情况下,存在着最优隐含层节点数,综合考虑训练时间和误差,本文选取隐含层节点数为50来对其他参数影响进行进一步研究;在相同参数设置条件下,训练函数Trainlm比Traingdm更适合数据量较小时的核事故源项反演,反演计算准确度更高,在节点数为50时训练时间缩短了近35%;高学习率以及双隐含层能有效地提高核事故源项反演的精度,但训练时间相对增加。
关 键 词:
辐射防护与环境保护;核事故;源项反演;BP神经网络;训练函数
Important Parameters in Inversion of Nuclear Accident Source Term Based on BP Neural Network
Abstract:
Keywords:
radiation protection and environmental protection
nuclear accident
source term inversion
BP neural network
training function
本文献已被
万方数据
等数据库收录!
点击此处可从《南京航空航天大学学报》浏览原始摘要信息
点击此处可从《南京航空航天大学学报》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号