首页 | 本学科首页   官方微博 | 高级检索  
     

正十烷简化机理的构建及其在发动机燃烧数值模拟中的应用
引用本文:尹柔,薛洁,王静波,李象远. 正十烷简化机理的构建及其在发动机燃烧数值模拟中的应用[J]. 推进技术, 2021, 42(8): 1876-1882
作者姓名:尹柔  薛洁  王静波  李象远
作者单位:四川大学化学工程学院,四川大学原子与分子物理研究所,四川大学化学工程学院,四川大学化学工程学院
基金项目:国家自然科学基金(91641120、91741201)
摘    要:
为了预测发动机点火包线和贫/富油极限等关键性能,迫切需要发展航空燃料及其典型组分的高精度化学动力学模型.针对燃料典型组分正十烷,采用自主开发的机理生成程序ReaxGen构建了其燃烧详细机理(1499种组分、5713步反应).为了验证机理的合理性与可靠性,在当量比Φ=0.5~2.0,压力p=0.1~8MPa的宽工况条件下...

关 键 词:正十烷  简化机理  直接关系图法  路径通量法  燃烧数值模拟
收稿时间:2019-11-14
修稿时间:2021-06-09

Reduced Mechanism for n-Decane Combustion and Its Application in Numerical Simulation of Aeroengine Combustor
YIN Rou,XUE Jie,WANG Jing-bo,LI Xiang-yuan. Reduced Mechanism for n-Decane Combustion and Its Application in Numerical Simulation of Aeroengine Combustor[J]. Journal of Propulsion Technology, 2021, 42(8): 1876-1882
Authors:YIN Rou  XUE Jie  WANG Jing-bo  LI Xiang-yuan
Affiliation:College of Chemical Engineering, Sichuan University,,College of Chemical Engineering, Sichuan University,
Abstract:
The energy release and combustion characteristics of fuel in aeroengines play an important role in the design of engines. In order to predict key performances such as engine ignition envelope and lean/rich fuel limit, there is an urgent need to develop high-precision chemical kinetic models of aviation fuel and its typical components. In this work, focusing on the typical component surrogate of n-decane in aviation fuel, a detailed mechanism for n-decane combustion including 1499 species and 5713 reactions is developed based on the automatic mechanism generation program of ReaxGen. In order to verify the reliability of the mechanism, the ignition delay simulation is carried out under the equivalence ratio of 0.5-2.0 and pressure of 1-80 atm. The results show that the detailed mechanism of n-decane has a good performance under a wide range of temperature, pressure and equivalence ratio. In order to obtain a high-precision simplified mechanism for aeroengine combustion simulation, the semi-detailed mechanism containing 709 species and 2793 reactions is generated through the method of directed relation graph with error propagation. Further, in the high temperature range of 1000-1500 K, the skeletal mechanism of 77 species and 359 reactions is developed by the paths flux analysis method. The skeletal mechanism reasonably describes the combustion characteristics of n-decane at high temperature, and the scale of the skeletal mechanism is suitable for the numerical simulation of combustion based on the flamelet generated manifold method. Based on the high precision skeletal mechanism, combining with the turbulent combustion model of flamelet generated manifold, the large eddy simulation method is used to simulate the single-head fan of the annular aeroengine combustor, and the unsteady flow field is preliminarily obtained. The results of temperature simulation are consistent with the experimental values.
Keywords:N-decane   Reduced mechanism   Directed relation graph with error propagation   Paths flux analysis   Numerical combustion simulation
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号