首页 | 本学科首页   官方微博 | 高级检索  
     

混合线性/非线性状态空间模型的边缘Rao-Blackwellized粒子滤波法(英文)
引用本文:尹建君,Mike Klaas. 混合线性/非线性状态空间模型的边缘Rao-Blackwellized粒子滤波法(英文)[J]. 中国航空学报, 2007, 20(4): 346-352
作者姓名:尹建君  Mike Klaas
作者单位:复旦大学电子工程系,Department of Computer Science University of British Columbia Vancouver V6T1Z4 Canada
摘    要:
本文提出了边缘 Rao-Blackwellized 粒子滤波器(marginal Rao-Blackwellized particle filter, MRBPF)算法,算法融合了 Rao-Blackwellized 粒子滤波器(Rao-Blackwellized particle filter , RBPF)算法和边缘粒子滤波器(marginal particle filter, MPF)算法。算法中状态被分为线形和非线性两部分,分别用 MPF 和卡尔曼滤波器(Kalman Filter)进行估计。地形辅助导航(terrain aided navigation, TAN)的仿真结果表明,与 RBPF 相比,提出算法的非线性状态估计的误差均方根(root mean square error, RMSE)和误差方差分别降低了约 29%和 96%,独立粒子数提高了约80%,获得了更好的收敛结果。分析表明,现有RBPF是MRBPF的一个特例。

关 键 词:信息处理技术  边缘Rao-Blackwellized粒子滤波器  仿真  混合线形/非线性  地形辅助导航

The Marginal Rao-Blackwellized Particle Filter for Mixed Linear/Nonlinear State Space Models
Yin Jianjun,Zhang Jianqiu,Mike Klaas. The Marginal Rao-Blackwellized Particle Filter for Mixed Linear/Nonlinear State Space Models[J]. Chinese Journal of Aeronautics, 2007, 20(4): 346-352
Authors:Yin Jianjun  Zhang Jianqiu  Mike Klaas
Abstract:
In this paper, the marginal Rao-Blackwellized particle filter (MRBPF), which fuses the Rao-Blackwellized particle filter (RBPF)algorithm and the marginal particle filter (MPF) algorithm, is presented. The state space is divided into linear and non-linear parts, which can be estimated separately by the MPF and the optional Kalman filter. Through simulation in the terrain aided navigation (TAN) domain, it is demonstrated that, compared with the RBPF, the root mean square errors (RMSE) and the error variance of the nonlinear state estimations by the proposed MRBPF are respectively reduced by 29% and 96%, while the unique particle count is increased by 80%. It is also found that the MRBPF has better convergence properties, and analysis has shown that the existing RBPF is nothing more than a special case of the MRBPF.
Keywords:signal processing  marginal Rao-Blackwellized particle filter  simulation  mixed linear/nonlinear  terrain aided navigation  Linear  Mixed  Particle Filter  State Space Models  analysis  special  case  better  convergence properties  unique  particle  count  increased  error variance  nonlinear  state  RMSE  root  mean  square
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号