首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊聚类的模糊神经网络在非定常气动力建模中的应用
引用本文:史志伟,明晓. 基于模糊聚类的模糊神经网络在非定常气动力建模中的应用[J]. 空气动力学学报, 2005, 23(1): 21-24
作者姓名:史志伟  明晓
作者单位:南京航空航天大学航空宇航学院,江苏,南京,210016
摘    要:建立了一种基于模糊聚类的模糊神经网络模型.该模型利用模糊聚类技术确定系统的模糊空间和模糊规则数,利用BP算法调整模糊神经网络的权系数.应用该模型对某飞机模型做俯仰-滚转耦合运动的非定常气动力进行了辨识.结果表明,基于模糊聚类的模糊神经网络计算速度快,辨识结果与实验结果符合较好.用模糊聚类技术可以解决模糊神经网络的结构辨识问题,基于模糊聚类的模糊神经网络可以很好地用于复杂机动飞行的非定常气动力建模.

关 键 词:模糊聚类  模糊神经网络  建模  非定常气动力
文章编号:0258-1825(2005)01-0021-04

The application of FNN in unsteady aerodynamics modeling based on fuzzy clustering
SHI Zhi-wei,MING Xiao. The application of FNN in unsteady aerodynamics modeling based on fuzzy clustering[J]. Acta Aerodynamica Sinica, 2005, 23(1): 21-24
Authors:SHI Zhi-wei  MING Xiao
Abstract:In this paper a Fuzzy Neural Network (FNN) model based on fuzzy clustering is developed. The fuzzy space and the number of fuzzy rules of this model are defined by the fuzzy clustering method and weight coefficients of the model are adjusted by the BP algorithm. Using the model the unsteady aerodynamics of one aircraft in pitching-rolling motion is identified. The simulating results are agreement with the experimental results very well. The calculating process can be speeded up. It is suggested that the fuzzy clustering method can be used to design fuzzy neural network structures and the developed model can be used to identify the nonlinear unsteady aerodynamics of many complicated maneuvers.
Keywords:fuzzy clustering  fuzzy neural network  modeling  unsteady aerodynamics
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号