首页 | 本学科首页   官方微博 | 高级检索  
     

神经网络方法在太阳质子事件短期预报中的应用
引用本文:龚建村,薛炳森,刘四清,邹自明,苗娟,王家龙. 神经网络方法在太阳质子事件短期预报中的应用[J]. 空间科学学报, 2003, 23(6): 443-451
作者姓名:龚建村  薛炳森  刘四清  邹自明  苗娟  王家龙
作者单位:中国科学院空间科学与应用研究中心,北京,100080;中国科学院国家天文台
基金项目:国家重点基础研究发展规划项目(G2000078408),中国科学院空间科学与应用研究中心空间环境预报中心共同资助项目
摘    要:在大量统计结果的基础上,深入研究了太阳质子事件预报机理.总结了质子事件爆发与太阳活动区面积、位置、McIntosh结构、磁结构以及前两天活动区爆发耀斑事件数目之间的关系.然后,在神经网络的基础上建立了太阳质子事件短期预报模型,并对2000年以后12个未参加训练的样本进行测试,结果对事件预报的准确率为83%.此外,我们还利用该模型对2002年1-4月发生的几次质子事件进行了预报试验,结果发现,这期间发生的6次事件都被预报.其中3次质子事件系统预报提前了3天,两次事件预报提前了2天,一次事件提前1天预报.

关 键 词:太阳质子事件  短期预报  神经网络
修稿时间:2002-11-07

SHORT TERM FORECAST OF SOLAR PROTON EVENT
GONG Jiancun XUE Bingsen LIU Siqing ZOU Ziming MIAO Juan. SHORT TERM FORECAST OF SOLAR PROTON EVENT[J]. Chinese Journal of Space Science, 2003, 23(6): 443-451
Authors:GONG Jiancun XUE Bingsen LIU Siqing ZOU Ziming MIAO Juan
Abstract:Solar Proton Events (SPE) are one kind of the major, severe space environmental events that induces errors even failure of the satellites on the orbit. In this paper, a model of SPE forecasting employing artificial neural network technology by Space Environment Prediction Center (SEPC) is introduced.The strength of solar event is related with releused from the solar burst. The size of area of the sunspot indicates the maximum strength of local magnetic field. The Mclntosh classification of the sunspot indicates the structure of the root area of the magnetic rope from the sunspot regions. The joint applying of the Mclntosh classification and the magnetic type enable us to describe the structure of the sunspot.In this paper, 10.7cm radio and X-ray fluxes were used, and the Artificial Neural Network (ANN) is employed. The digitized morphology data are then arranged and feed into the neural network. Through training the model based on ANN algorithm a forecast model was constructed. With it, the forecast of SPE 1-3 days ahead can be made. Statistics shows that the accuracy of our forecast is about 80%.
Keywords:Solar proton event   Forecast   Artificial neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号