首页 | 本学科首页   官方微博 | 高级检索  
     

按区域惩罚划分的并行多目标遗传算法
作者姓名:李昌隆  程鹏  陈晓波  柴旭东
作者单位:北京航空航天大学,自动化科学与电气工程学院,北京,100083;北京仿真中心,北京,100854
摘    要:解决多学科设计优化问题的多目标遗传算法通常面临着大计算量的挑战,提出了一种新型的并行化算法来提高其效率.全局个体均匀的分布在各个进程,首先从所有的进程中获取全局范围的Pareto最优解极值,并发送给每个进程,再由这些极值来构造各个进程自己的惩罚函数.通过惩罚函数给个体添加约束来划分各个进程的收敛区域,同时采取优化措施保证每个进程加速收敛并且收敛区域没有重叠和遗漏,这样每个进程只需收敛到特定的一段Pareto最优解,降低了计算量;同时由于进程间交换的数据量小,保证了效率的提高.通过与串行算法(NSGA2)和其他的并行化算法比较,显示了该算法的有效性和先进性.

关 键 词:遗传算法  并行算法  多目标优化  多学科优化
文章编号:1001-5965(2005)11-1232-05
收稿时间:2004-09-06
修稿时间:2004-09-06
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号