首页 | 本学科首页   官方微博 | 高级检索  
     

非平稳信号特征提取在航空发动机故障诊断中的应用
引用本文:应勇,王仲生. 非平稳信号特征提取在航空发动机故障诊断中的应用[J]. 航空计测技术, 2007, 27(2): 7-10
作者姓名:应勇  王仲生
作者单位:西北工业大学航空学院,陕西西安710072
基金项目:国家自然科学基金 , 航空基础科学基金
摘    要:
在航空发动机早期故障诊断中,特征提取是早期诊断的重要过程之一.文中以航空发动机转子故障为研究对象,给出了基于经验模式分解、小波分析为核心的故障特征提取方法,并作了针对性的比较研究.在matlab7.0环境下开发了一个故障特征提取软件系统.研究结果表明:基于经验模式分解的时频分析方法可以很有效地提取到非平稳故障特征信号,是一种适合于非线性信号处理的方法.

关 键 词:经验模式分解  小波变换  早期故障诊断  故障特征提取  非平稳  信号特征提取  航空发动机  早期故障诊断  应用  Faults Diagnosis  Engine  Aircraft  Signal  Features  信号处理  非线性  特征信号  时频分析方法  结果  软件系统  开发  环境  比较  核心
文章编号:1002-6061(2007)02-0007-04
修稿时间:2006-10-202007-03-19

Application of Extracting Features of Unbalanced Signal to Aircraft Engine Faults Diagnosis
YING Yong,WANG Zhong-sheng. Application of Extracting Features of Unbalanced Signal to Aircraft Engine Faults Diagnosis[J]. Aviation Metrology & Measurement Technology, 2007, 27(2): 7-10
Authors:YING Yong  WANG Zhong-sheng
Abstract:
Extracting features of the faults is one of the most important processes in the aircraft engine incipient faults diagnosis.We study the aircraft engine rotor faults and present two methods for extracting feature of faults based on empirical mode decomposition(EMD) and wavelet transformation respectively.Through the numerical data magnitude analyzing and emulation,we compare the characteristics between two methods.Under the environment of Matlab7.0,a soft system of extracting feature of the fault is developed.The experiment result shows that the time-frequency method based on EMD can effectively extract the feature of unbalanced fault signal and is proper for non-frequency modulation signal procession.
Keywords:empirical mode decomposition   wavelet transformation   incipient faults diagnosis   extracting features of the faults
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号