首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2722篇
  免费   199篇
  国内免费   148篇
航空   2110篇
航天技术   206篇
综合类   196篇
航天   557篇
  2024年   6篇
  2023年   43篇
  2022年   62篇
  2021年   72篇
  2020年   87篇
  2019年   94篇
  2018年   53篇
  2017年   91篇
  2016年   103篇
  2015年   52篇
  2014年   82篇
  2013年   60篇
  2012年   189篇
  2011年   142篇
  2010年   80篇
  2009年   104篇
  2008年   118篇
  2007年   121篇
  2006年   108篇
  2005年   97篇
  2004年   86篇
  2003年   97篇
  2002年   100篇
  2001年   93篇
  2000年   90篇
  1999年   77篇
  1998年   89篇
  1997年   90篇
  1996年   77篇
  1995年   85篇
  1994年   77篇
  1993年   63篇
  1992年   79篇
  1991年   65篇
  1990年   54篇
  1989年   54篇
  1988年   10篇
  1987年   17篇
  1985年   1篇
  1984年   1篇
排序方式: 共有3069条查询结果,搜索用时 46 毫秒
1.
交流永磁同步电机(PMSM)电流环控制性能是制约交流伺服系统性能的关键。电流预测控制拥有更快的动态响应、更低的电流谐波和优良的转矩响应,但该算法依赖精确的电机模型,参数失配会引发稳态电流误差,无法输出额定转矩,进而导致电机转矩输出效率降低。根据永磁同步电机电流预测模型,详细分析了d、q轴电流静差产生的原因,以及电流预测控制对电机参数误差的敏感性,提出了一种参数误差量化分析方法。该方法引入了电机参数偏差因子,量化描述了电机电感、磁链参数误差与电流静差之间的制约关系。通过仿真分析,验证了所提方法的合理性,为高性能永磁伺服电流预测数字控制技术打下了良好基础。  相似文献   
2.
飞秒激光直写技术在复杂三维微结构加工领域具有显著优势,而调焦是否精准直接影响了所加工结构的完整度.提出了在光路中临时置入调焦光源和物的图像调焦技术,通过调节物的位置使其成像面与激光聚焦面一致,从而通过清晰可分辨的成像状态间接反映激光聚焦状态.利用Zemax软件模拟分析了原飞秒激光光路与加入调焦光源和物的调焦光路,二者可实现相同加工物镜后工作距离与良好成像质量,证明了该方法的可行性.通过分析得到该过程的成像误差主要由成像镜头焦深(3.9 μm)引起,我们获得的理想调焦精度可达到1/2焦深以内.设计了单层高度为5 μm的二层圆柱结构,通过多次实验验证了所加工元件高度误差在1.5 μm范围以内,与理论分析一致,满足飞秒激光系统的调焦要求.  相似文献   
3.
4.
5.
整体壳段为航天产品核心零部件,具有结构复杂、尺寸精度高、材料去除率大、工艺过程复杂、加工周期长等特点。在壳段数控加工过程中,存在编程难度大、重复工作量大、效率低及编程质量与编程人员能力水平密切相关等问题。为了适应高效、高可靠性的任务需求,依托成熟商用CAM软件,通过对整体壳段典型特征的分析,基于UG NX软件平台研究并开发了典型特征自动化编程模块,有效提高了加工程序的质量稳定性,并极大降低了工艺人员的编程操作量,提高了工艺设计效率。  相似文献   
6.
7.
8.
9.
10.
低温磨料气射流加工PDMS实验研究   总被引:1,自引:1,他引:0  
通过自研的低温磨料气射流加工装置进行低温磨料气射流加工聚二甲基硅氧烷(polydimethylsiloxane,PDMS)实验研究,分析了加工时间、加工距离、冲蚀角度和磨料粒径对冲蚀率、孔深和孔横截面形貌的影响。结果表明:随着加工时间的增加,冲蚀率先增大后减小,在第1阶段加工过程中,孔深与加工时间大致呈线性关系,增加加工时间还可使孔底部变平整;存在一个最佳加工距离使孔深最大,当加工距离大于最大加工距离时,孔深将随着加工距离的增加而急剧下降,孔的锥度随着加工距离的增大而增大;当冲蚀角度处于30°~60°之间时,冲蚀率最大,随着冲蚀角度的增加,孔的形状逐步由椭圆形变成圆形;存在一个最佳磨料粒径,使冲蚀率和孔深达到最大;当冲蚀角度小于90°时,低温磨料气射流加工PDMS材料去除机理为塑性去除和脆性去除的结合。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号