首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
航天技术   10篇
航天   2篇
  2021年   1篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   3篇
  2008年   2篇
  2002年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Development of new methods for estimating biophysical parameters can be considered one of the most important targets for the improvement of grassland parameters estimation at full canopy cover. In fact, accurate assessment methods of biophysical characteristics of vegetation are needed in order to avoid the uncertainties of carbon terrestrial sinks.

Remote sensing is a valid tool for scaling up ecosystem measurements towards landscape levels serving a wide range of applications, many of them being related to carbon-cycle models. The aim of this study was to test the suitability of satellite platform sensors in estimating grassland biophysical parameters such as LAI, biomass, phytomass, and Green herbage ratio (GR). Also, we wanted to compare some of the most common NIR and red/green-based vegetation indices with ones that also make use of the MIR band, in relation to their ability to predict grassland biophysical parameters.

Ground-truth measurements were taken on July 2003 and 2004 on the Monte Bondone plateau (Italian Alps, Trento district) in grasslands varying in land use and management intensities. From satellite platforms, an IRS-1C-LISS III image (18/07/2003; 25 m resolution in the visible-NIR and 70 m resolution in the MIR) and a SPOT 5 image (27/07/2004, 10 m resolution in the visible-NIR and MIR) were used.

LAI, biomass, and phytomass measurements showed logarithmic relationships with the investigated NIR and red/green-based indices. GreenNDVI showed the highest R2 values (0.59, IRS 2003; 0.60, SPOT 2004). Index saturation occurred above approximately 100–150 g m−2 of biomass (LAI 1.5–2). On the other hand, GR relationships were shown to be linear. MIR-based indices performed better than NIR and red/green-based ones in estimating biophysical variables, with no saturation effect. Biomass showed a linear regression with Canopy Index (MIR/green ratio) and with the Normalised Canopy Index (NCI) calculated as a normalised difference between MIR and green bands (IRS: R2 = 0.91 and 0.90, respectively. SPOT: R2 = 0.63 and 0.64). Similar correlations could also be found for LAI and phytomass, and GR predictability was shown to be higher than NDVI and GreenNDVI. According to these results obtained in the investigated areas, phytomass, biomass, LAI, and GR are linearly correlated with the investigated MIR band indices and as a result, these parameters could be estimated from the adopted satellite platforms with limited saturation problems.  相似文献   

2.
As a typical semiarid farming-pastoral ecotone sensitive to the environmennt, the Plain of West Liaohe Basin (WLBP) is currently experiencing drastic environmental changes. To identify how environmental change affect vegetation in the WLBP, we analysed spatiotemporal variation characteristics of Ecological environment factors based on monthly and annual air temperature (T), precipitation (P) and Normalized Difference Vegetation Index (NDVI) from 1982 to 2015. And the correlations between them were investigated by correlation analysis (Simple correlation, partial correlation and complex correlation) at temporal and spatial scale. The results showed that: (1) the vegetation growth of the WLBP showed ameliorated trend, with a change rate of 0.004/yr.; (2) P was more sensitive to NDVI than T; (3) and the influence of hydrothermal changes on vegetation growth was more significant than that of the change of single climate factors at time scales; (4) the effects of anthropogenic factors on vegetation change were 75.07% (1982–1993) and 98.08% (1994–2015), respectively. At the temp-special scales, P&T and land use type change (LUCC) were the main climatic and anthropogenic factors that affect vegetation changes, respectively.  相似文献   
3.
In this paper, we used the available algorithm for soil moisture estimation over LOPEX05 (the Loess Plateau land surface process Experiment (2005)) area. The available algorithm used ENVISAT/ASAR AP mode VV polarization observational data at a low incidence angle and ground measured soil moistures. The ground measurements were performed in the summer of the 2005 during the LOPEX05 field campaign. The validated results indicate that an average difference between the soil moistures estimated from the microwave remote sensing and ground measurements is less than 0.02 cm3/cm3, with a RMS error of 2.0%, and a maximum less than 0.04 cm3/cm3. The algorithm was applied to the surface soil moisture mapping later. The results show that this algorithm is suitable for monitoring soil moisture information of the agricultural fields over the Chinese Loess Plateau, when ground land cover situation and the resolution of imagery data are taken into account. However, we also find that there are large differences over the steep slope region, the edge of mesa. The results are not acceptable for surface soil moisture estimation in these regions. Thus, the surface soil moisture retrieval in the steep slope region of the Loess Plateau need to be further investigated in the future.  相似文献   
4.
Vegetation fractional coverage (VFC) is an important vegetation parameter affecting exchanges of carbon, water, energy between the atmosphere and surface. In this study, the applicability of tonal and texture measures calculated using an IKONOS_2 image in retrieving VFC of forests was investigated in the urban area of Nanjing city, China. Four spectral vegetation indices (VI) and six texture measures (TEX) were related to VFCs acquired from in situ measurements. Models for estimating VFC based on VIs or/and TEXs were established and validated for planted low broad-leaf forest plots (PLB), planted mature forest plots (PMF), natural broad-leaf forest plots (NBF), and all forest plots (ALLv), respectively. The results show that high spatial resolution remote sensing data is applicable to estimate VFC in urban areas, and TEXs may act as effective supplements of vegetation indices (VIs) for the retrieval of VFC. VIs are suitable for VFC estimation of mature forests (such as NBF and PMF) with high vegetation density, and TEXs can yield a more accurate estimate for planted forests (such as PLB and PMF) with regular spatial distribution if they are calculated with proper parameters, such as window size. The combination of VIs and TEXs improve the estimation of VFC if forest types are not previously differentiated. The results can be used as a reference for determining effective spectral or texture parameters in VFC estimation under similar environmental conditions according to vegetation maturity and regularity.  相似文献   
5.
Land surface temperature (LST) is an important factor in global change studies, heat balance and as control for climate change. A comparative study of LST over parts of the Singhbhum Shear Zone in India was undertaken using various emissivity and temperature retrieval algorithms applied on visible and near infrared (VNIR), and thermal infrared (TIR) bands of high resolution Landsat-7 ETM+ imagery. LST results obtained from satellite data of October 26, 2001 and November 2, 2001 through various algorithms were validated with ground measurements collected during satellite overpass. In addition, LST products of MODIS and ASTER were compared with Landsat-7 ETM+ and ground truth data to explore the possibility of using multi-sensor approach in LST monitoring. An image-based dark object subtraction (DOS3) algorithm, which is yet to be tested for LST retrieval, was applied on VNIR bands to obtain atmospheric corrected surface reflectance images. Normalized difference vegetation index (NDVI) was estimated from VNIR reflectance image. Various surface emissivity retrieval algorithms based on NDVI and vegetation proportion were applied to ascertain emissivities of the various land cover categories in the study area in the spectral range of 10.4–12.5 μm. A minimum emissivity value of about 0.95 was observed over the reflective rock body with a maximum of about 0.99 over dense forest. A strong correlation was established between Landsat ETM+ reflectance band 3 and emissivity. Single channel based algorithms were adopted for surface radiance and brightness temperature. Finally, emissivity correction was applied on ‘brightness temperature’ to obtain LST. Estimated LST values obtained from various algorithms were compared with field ground measurements for different land cover categories. LST values obtained after using Valor’s emissivity and single channel equations were best correlated with ground truth temperature. Minimum LST is observed over dense forest as about 26 °C and maximum LST is observed over rock body of about 38 °C. The estimated LST showed that rock bodies, bare soils and built-up areas exhibit higher surface temperatures, while water bodies, agricultural croplands and dense vegetations have lower surface temperatures during the daytime. The accuracy of the estimated LST was within ±2 °C. LST comparison of ASTER and MODIS with Landsat has a maximum difference of 2 °C. Strong correlation was found between LST and spectral radiance of band 6 of Landsat-7 ETM+. Result corroborates the fact that surface temperatures over land use/land cover types are greatly influenced by the amount of vegetation present.  相似文献   
6.
Remote sensing applications have greatly enhanced ability to monitor and manage in the areas of forestry. Accurate measurements of regional and global scale vegetation dynamics (phenology) are required to improve models and understanding of inter-annual variability in terrestrial ecosystem carbon exchange and climate–biosphere interactions. Study of vegetation phenology is required for understanding of variability in ecosystem. In this paper, monitoring of vegetation dynamics using time series of satellite data is presented. Vegetation variability (vegetation rate) in different topoclimatic areas is investigated. Original software using IDL interactive language for processing of satellite long-term data series was developed. To investigate growth dynamics vegetation rate inferred from remote sensing was used. All estimations based on annual time series of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Vegetation rate for Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) was calculated using MODIS data. The time series covers spring seasons of each of 9 years, from 2000 to 2008. Comparison of EVI and NDVI derived growth rates has shown that NDVI derived rates reveal spatial structure better. Using long-term data of vegetation rates variance was estimated that helps to reveal areas with anomalous growth rate. Such estimation shows sensitivity degree of different areas to different topoclimatic conditions. Woods of heights depend on spatial topoclimatic variability unlike woods of lowlands. Principal components analysis shows vegetation with different rate conditions. Also it reveals vegetation of same type in areas with different conditions. It was demonstrated that using of methods for estimating the dynamic state of vegetation based on remote sensing data enables successful monitoring of vegetation phenology.  相似文献   
7.
GNSS-Reflectometry (GNSS-R) is a remote sensing technique which performs bistatic measurements of the earth surface scattering. This paper presents some theoretical simulations of the specular scattering coefficient of a forested area, with the aim of demonstrating the potentiality of GNSS-R in monitoring forest biomass. The study is performed by means of an electromagnetic model developed in the past years and tested over several vegetation covered sites in its active and passive version. Here, after showing a comparison between model results and measurements over a forest site in the monostatic configuration, and after summarizing other previous validations, the extension to the specular configuration, typical of GNSS-R systems, will be presented. Namely, simulations are carried out at circular polarization and a sensitivity analysis of the received power in the specular configuration to some soil and forest parameters is shown.  相似文献   
8.
CBERS-1卫星绝对辐射校正试验应用初探   总被引:3,自引:0,他引:3  
文章在中国资源卫星应用中心对CBERS-1卫星所做的绝对辐射校正试验研究的基础上,对试验区的图像做了植被指数应用研究,结果表明遥感图像的定量化研究具有十分重要的意义。  相似文献   
9.
The paper shows the efficiency of an application of the vegetation index image time series to determine long-term vegetation dynamics. The influence of large industrial centers of Siberia on the near-by vegetation is demonstrated. The analysis of the data shows that the influence of industrial waste is stronger in the Siberian North. These regions are characterized by critical conditions for vegetation existence. In the south of the Krasnoyarsk region, human impact is also important, but the possibility of vegetation self-rehabilitation is higher. The present-day economic situation in Russia is unique, with a temporary abrupt fall of industrial production and its following increase. Thus, we managed to analyze the degree of human impact on the environment within a relatively short-time interval.  相似文献   
10.
With the free and full access to images from Sentinel-2 satellite, the interest to use this data for quantitative retrieval of vegetation parameters is ever-increasing. LAI and chlorophyll are two key variables which are desired for studying productivity, nutrient and stress status of vegetation. Studies carried out on croplands using simulated Sentinel-2 MSI and parametric approach have identified vegetation indices (VIs) with high sensitivity to LAI and chlorophyll. To test how Sentinel-2 red-edge based VIs perform for retrieval of LAI and Chlorophyll of tropical mixed forest canopies, this study has been performed. The field measurements of LAI and chlorophyll content were recorded in a total of 28 ESUs (Elementary Sampling Units) in Bhakra range in the Tarai Central Forest Division, Uttarakhand (India). The in-situ measurements were statistically correlated with Sentinel-2VIs and strength of correlation was validated using Predicted Residual Error Sum of Squares (PRESS) statistic. Field LAI corrected for foliage clumpiness effect improved correlation of VIs with LAI. Among all VIs tested, Normalized Difference Index (NDI) offered highest positive correlation (R2 = 0.79, p < 0.05) with LAI while Red-Edge Chlorophyll Index (RECI) (R2 = 0.83, RMSE = 0.24 g/m2, p < 0.05) and Simple Ratio (SR) 740/705 (R2 = 0.79, RMSE = 0.27 g/m2, p < 0.05) were the most closely related to chlorophyll content. VIs with red-edge and NIR combinations offered best results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号