首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航天技术   5篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the period February 20 – April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°–60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 μGy h−1 behind 1.75 g cm−2 shielding at Foton M2, 2314 μGy h−1 behind 0.71 g cm−2 shielding at Foton M3 and 19,195 μGy h−1 (Flux is 8363 cm−2 s−1) behind les than 0.4 g cm−2 shielding at ISS.  相似文献   
2.
Space radiation has been monitored successfully using the Radiation Risks Radiometer-Dosimeter (R3D) installed at the ESA EXPOSE-R (R3DR) facility outside of the Russian Zvezda module of the International Space Station (ISS) between March 2009 and January 2011. R3DR is a Liulin type spectrometer–dosimeter with a single Si PIN detector 2 cm2 of area and 0.3 mm thick. The R3DR instrument accumulated about 2 million measurements of the absorbed dose rate and flux of 10 s resolution. The total external and internal shielding before the detector of R3DR device is 0.41 g cm−2. The calculated stopping energy of normally incident particles to the detector is 0.78 MeV for electrons and 15.8 MeV for protons. After the Coronal Mass Ejection (CME) at 09:54 UTC on 3 April 2010, a shock was observed at the ACE spacecraft at 0756 UTC on 5 April, which led to a sudden impulse on Earth at 08:26 UTC. Nevertheless, while the magnetic substorms on 5 and 6 of April were moderate; the second largest in history of GOES fluence of electrons with energy >2 MeV was measured. The R3DR data show a relatively small amount of relativistic electrons on 5 April. The maximum dose rate of 2323 μGy day−1 was reached on 7 April; by 9 April, a dose of 6600 μGy was accumulated. By the end of the period on 7 May 2010 a total dose of 11,587 μGy was absorbed. Our data were compared with AE-8 MIN, CRESS and ESA-SEE1 models using SPENVIS and with similar observations on American, Japanese and Russian satellites.  相似文献   
3.
Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time.  相似文献   
4.
Long-term analysis of data from two radiation detection instruments on the International Space Station (ISS) shows that the docking of the Space Shuttle drops down the measured dose rates in the region of the South Atlantic Anomaly (SAA) by a factor of 1.5–3. Measurements either by the R3DE detector, which is outside the ISS at the EuTEF facility on the Columbus module behind a shielding of less than 0.45 g cm−2, and by the three detectors of the Liulin-5 particle telescope, which is inside the Russian PEARS module in the spherical tissue equivalent phantom behind much heavier shielding demonstrate that effect. Simultaneously the estimated averaged incident energies of the incoming protons rise up from about 30 to 45 MeV. The effect is explained by the additional shielding against the SAA 30–150 MeV protons, provided by the 78 tons Shuttle to the instruments inside and outside of the ISS. An additional reason is the ISS attitude change (performed for the Shuttle docking) leading to decreasing of dose rates in two of Liulin-5 detectors because of the East–West proton fluxes asymmetry in SAA. The Galactic Cosmic Rays dose rates are practically not affected.  相似文献   
5.
Space weather and related ionizing radiation has been recognized as one of the main health concerns for the International Space Station (ISS) crew. The estimation of the radiation effect on humans outside the ISS requires at first order accurate knowledge of their accumulated absorbed dose rates, which depend on the global space radiation distribution, solar cycle and local variations generated by the 3D mass distribution surrounding the ISS. The R3DE (Radiation Risks Radiometer-Dosimeter for the EXPOSE-E platform) on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. A very similar instrument named R3DR for the EXPOSE-R platform worked outside the Russian Zvezda module of the ISS between March 2009 and August 2010. Both are Liulin-type detectors, Bulgarian-built miniature spectrometer-dosimeters. The acquired approximately 5 million deposited energy spectra from which the flux and absorbed dose rate were calculated with 10 s resolution behind less than 0.41 g cm−2 shielding. This paper analyses the spectra collected in 2009 by the R3DE/R instruments and the long-term variations in the different radiation environments of Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and relativistic electrons from the Outer Radiation Belt (ORB). The R3DE instrument, heavily shielded by the surrounding structures, measured smaller primary fluxes and dose rates from energetic protons from the SAA and relativistic electrons from the ORB but higher values from GCRs because of the contribution from secondary particles. The main conclusion from this investigation is that the dose rates from different radiation sources around the International Space Station (ISS) have a large special and temporal dynamic range. The collected data can be interpreted as possible doses obtained by the cosmonauts and astronauts during Extra Vehicular Activities (EVA) because the R3DE/R instruments shielding is very similar to the Russian and American space suits average shielding (,  and ). Fast, active measurements are required to assess accurately the dose accumulated by astronauts during EVA.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号