首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1552篇
  免费   377篇
  国内免费   184篇
航空   1266篇
航天技术   230篇
综合类   205篇
航天   412篇
  2024年   10篇
  2023年   59篇
  2022年   88篇
  2021年   81篇
  2020年   79篇
  2019年   97篇
  2018年   85篇
  2017年   90篇
  2016年   85篇
  2015年   79篇
  2014年   95篇
  2013年   58篇
  2012年   100篇
  2011年   89篇
  2010年   97篇
  2009年   85篇
  2008年   72篇
  2007年   63篇
  2006年   57篇
  2005年   78篇
  2004年   58篇
  2003年   51篇
  2002年   34篇
  2001年   62篇
  2000年   37篇
  1999年   21篇
  1998年   30篇
  1997年   28篇
  1996年   45篇
  1995年   31篇
  1994年   34篇
  1993年   26篇
  1992年   33篇
  1991年   14篇
  1990年   22篇
  1989年   17篇
  1988年   1篇
  1987年   7篇
  1986年   6篇
  1985年   5篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有2113条查询结果,搜索用时 31 毫秒
1.
针对液体大幅晃动、通信资源受限的充液航天器姿态控制系统,提出一种自适应滑模控制与事件触发机制相结合的控制策略。首先,针对固-液耦合的充液航天器姿态控制系统,选用滑模变结构控制来削弱液体大幅晃动的非线性影响,并设计自适应更新律在线估计不确定参数来提高系统的鲁棒性。然后,考虑星载计算机资源的限制,设计相对阈值的事件触发机制来决定控制输入信号的更新,从而减少控制器与执行器之间的信号更新对通信网络的占用。最后,仿真结果表明,在液体大幅晃动下,所提控制策略不但可以使航天器姿态控制系统最终收敛到任意小的界内,而且可以减少96%的控制信号传输,减轻航天器的通信负载。   相似文献   
2.
为了探究采用射流预冷技术之后加力燃烧室性能,开展了不同喷嘴布置方案、喷水量和来流温度对预冷效果的影响研究。对射流预冷发动机工作过程进行了简化,建立了加力燃烧室进口前段射流预冷喷水特性计算的数学模型。同时搭建了小型试验台,通过与试验结果的比对验证了该模型的准确性,并利用该模型对射流预冷效果进行了仿真预测。结果表明:提高喷嘴数量与布置均匀性能够小幅度改善预冷效果;当来流温度不变时,射流预冷喷射腔室出口处的液态水蒸发量随着喷水量的增加而提高,但蒸发率却处于下降的趋势;当喷水量达到2%时,加力燃烧室燃烧效率对比不喷水工况会有一定的提升;喷水量达到4%以后,加力燃烧室出口温度及燃烧效率随着喷水量的提高而降低;喷水量大于8%以后,恶化了加力燃烧室(V型火焰稳定器)贫油熄火极限与燃烧效率;喷水量达到最大10%时,油气比需从原来设计工况的0.052上升到0.064才能保持稳定点火且对比不喷水时工况,加力燃烧室出口温度由1860K下降到1373K,燃烧效率由80.2%下降到69.2%。  相似文献   
3.
针对同轴旋转倒置圆台环隙间流体复杂流动问题, 对其环隙间流动特性进行了实验研究。重点进行染色液流动显示实验和PIV流场测速实验, 对实验结果做定性及定量分析, 研究内筒转速和环隙宽度对环隙间流动特性的影响。染色液流动显示实验和PIV流场测速实验分别定性和定量地展现了环隙间螺旋涡的产生及变化过程。对不同内筒转速和环隙宽度下的螺旋涡涡心运动周期进行分析, 结果表明, 内筒转速升高, 周期减小;环隙宽度增大, 周期增大。运用瞬时流动和时均流场解析了环隙间螺旋涡运动产生机制, 探究内筒转速和环隙宽度对3种雷诺应力大小的影响与分布情况。内筒转速变化, 雷诺径向正应力始终最大;环隙宽度变化, 雷诺切应力始终最小。   相似文献   
4.
空蚀是流体机械中普遍存在的现象。空蚀研究涉及空化结构的产生、运动和溃灭过程,分析获取空蚀引起的冲击载荷,并评估特定材料在冲击载荷下的抗冲击能力变得尤为重要。由于空化结构的生成和溃灭过程中涉及复杂的物理机制、宽泛的时空尺度,开展空化结构的溃灭和空蚀风险预估研究具有诸多挑战。文章首先梳理了针对云空化结构溃灭和空蚀破坏方面已开展的理论、数值和实验研究,然后介绍基于能量输运的空蚀风险预估模型方面开展的初步工作,最后探讨了今后在该领域可能的研究方向。  相似文献   
5.
采用全域CZM模型模拟了复合固体推进剂从细观脱湿到基体开裂,直至微裂纹扩展汇合,最后断裂破坏的演化过程,探索了其宏观力学行为发生发展的内在原因。数值模拟结果在微裂纹的开裂特征以及推进剂的宏观应力-应变曲线等方面与试验结果吻合较好。研究结果表明,采用全域CZM模型能有效模拟复合推进剂材料细观断裂破坏过程及其宏观力学性能;通过参数反演可知混合基体的初始刚度远小于颗粒/基体界面的,而粘接强度和粘接能大于界面的,这使得基体易变形而界面先脱湿;可将推进剂受拉伸载荷的细观力学行为分为四个阶段:无损伤变形阶段、界面部分脱湿阶段、脱湿与基体开裂并存阶段、微裂纹聚合断裂阶段。  相似文献   
6.
包埋渗铝获得的镍铝涂层是一种最早使用的Al_2O_3膜热生长型高温涂层。自20世纪50年代应用于航空发动机热端部构件的高温防护以来,进一步提高其抗高温氧化性能的机理和技术研究延续至今。基于对合金氧化及Al_2O_3膜热生长机制的理解,提出了晶粒细化与特定金属氧化物掺杂可提升镍铝涂层抗氧化性能的观点,介绍了涂层晶粒细化与金属氧化物弥撒掺杂方法,讨论了这些结构和成分改性影响涂层抗高温氧化性能的关键因素:包括Al_2O_3膜生长速度、亚稳态相向稳态相转变、涂层的黏附性以及涂层与合金基体的互扩散。这些新的研究结果有望为进一步挖掘渗铝涂层的应用潜力、延长其服役寿命提供理论和试验基础。  相似文献   
7.
液液同轴离心式喷嘴喷雾过程研究进展   总被引:2,自引:0,他引:2  
内部流动主要研究了流量系数、液膜厚度和气核半径,分析了内部流场,少量研究涉及内外喷嘴液膜互击、液膜表面波振幅和频率等方面。液液喷嘴外部液膜流动及喷雾特性的研究开展较多,观测了不同工况、结构参数下内外液膜流动形态,少数学者使用理论方法分析了液膜破碎机理。对喷雾特性的研究主要是获得了喷雾锥角、破碎长度、液膜振荡频率等的变化规律,并进一步研究了SMD、液滴速度、混合特性等的变化规律。  相似文献   
8.
针对当前高温形状记忆合金材料加工难度大、密度较高,而高温形状记忆聚合物材料回复应力小、难以满足实际应用需求的问题,制备了一种高回复力、低密度的新型高温形状记忆聚酰亚胺复合材料。该材料通过在形状记忆聚酰亚胺基体中引入双向碳纤维布作为增强相而制得,其玻璃转化温度为303℃,回复应力达130 MPa、密度为0.98×103kg/m~3。其回复应力媲美一些高温形状记忆合金,远高于其他形状记忆聚合物材料,但密度则不足合金的1/6。研究结果表明,该材料在形状回复过程中,能够掀翻为其自身重量170倍的金属板,在高温连接套管、自动开尾栓、弹性变形翼等领域有重要的应用前景。  相似文献   
9.
反推力装置运动学与动力学仿真   总被引:1,自引:1,他引:0  
陈永琴  何杰  苏三买 《航空动力学报》2019,34(11):2316-2323
为了研究叶栅式反推力装置各部件在工作过程中的运动学与动力学特性,根据机构运动原理对反推力装置进行简化并建立了运动学与动力学数学模型。以滑动整流罩位移与阻流门所受气动负荷为输入进行运动学与动力学仿真,得到了反推力装置各部件的位移、速度及受力特性曲线,并对比分析了在不同尺寸参数下各部件特征点的运动轨迹和反推力装置负载力变化。结果表明:运动学及动力学仿真结果与工程实际相符;反推力装置机构参数选择不合理时,各设计点会发生干涉现象并导致机构无法运动;机构参数变化对负载力最大值影响尤为突出,在阻流门AC段长度值增大6%,阻流门CB段长度值减小9%的情况下,负载力正向最大值将增大19.53%,负向最大值增大12.67%。研究方法及研究结果可为反推力装置运动学及动力学分析,以及为反推力装置机构优化设计提供参考。   相似文献   
10.
触摸屏上的触觉再现技术增加了人机交互的真实感和丰富性。在触觉再现中,掩蔽效应改变了触觉感知特性(绝对阈值和分辨阈值),影响了触觉渲染模型的准确性及触觉再现效果的真实性。基于机械振动、空气压膜与静电力三元融合的触觉再现装置,采用“三下一上”的实验方法,研究5种不同幅度的机械振动触觉反馈作为掩蔽刺激时,空气压膜触觉反馈感知特性的变化。与静电力触觉反馈作为目标刺激时感知特性的变化进行比较,得出如下结论:在绝对阈值方面,当机械振动驱动电压幅度由0 V增加到100 V时,空气压膜绝对阈值由34.30 V增加到46.41 V,增加了35.31%,增长幅度为静电力绝对阈值增长幅度的14.95%;在分辨阈值方面,当机械振动驱动电压幅度由0 V增加到100 V时,空气压膜分辨阈值在(15.21±0.67)V范围内浮动,变化趋势与静电力触觉反馈基本相同。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号