首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
航天   1篇
  2022年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Electromagnetic wave absorbing materials are urgently required in the fields of medicine, communication, and military. However, the thickness, weight, narrow effective bandwidth, and weak absorbing ability of the materials restrict their further application. In this work, a double-layer hollow nanocube with a dielectric titanium dioxide (TiO2) shell and a magnetic CoFe oxide inner shell is prepared. Prussian blue (PB) is prepared by the hydrothermal method, and used as the template to prepare PB@CoFe PB analogue (PBA). After selective etching and further calcination, hollow CoFe oxide particles are obtained. The obtained particles are then coated with SiO2 and TiO2, respectively, and the intermediate layer is dislodged to obtain the final CoFe oxide@TiO2 with the hollow double shell structure. The obtained double-layer hollow structure can effectively capture the incident electromagnetic waves, and increase the propagation path. Moreover, the obvious enhancement of interface polarization and the improvement of impedance matching enhance the wave absorbing ability of the material. The analysis results show that, the structure is stable and the dispersion is good. The maximum reflection loss (RL) at 10 GHz is as high as -46.1 dB with the sample thickness of 1.6 mm. The light-weight and high-efficiency CoFe oxide@TiO2 absorber is promised to be used in commercial and military aerospace fields.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号