首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
航天技术   2篇
  2020年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
集合卡尔曼滤波在电离层短期预报中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
提出了一种利用集合卡尔曼滤波对电离层f0F2短期预报结果进行优化的方法. 利用训练好的神经网络对f0F2进行提前1~24 h的预报, 考虑前一天预报误差的反馈信息, 动态跟踪 f0F2的变化趋势, 引入集合卡尔曼滤波对神经网络的预报结果实行进一步修正和优化. 实验结果表明, 此方法的预报效果优于单纯的神经网络模型和IRI模型. 此方法还可以应用于其他电离层参量的短期预报.   相似文献   
2.
A key requirement for accurate trajectory prediction and space situational awareness is knowledge of how non-conservative forces affect space object motion. These forces vary temporally and spatially, and are driven by the underlying behavior of space weather particularly in Low Earth Orbit (LEO). Existing trajectory prediction algorithms adjust space weather models based on calibration satellite observations. However, lack of sufficient data and mismodeling of non-conservative forces cause inaccuracies in space object motion prediction, especially for uncontrolled debris objects. The uncontrolled nature of debris objects makes them particularly sensitive to the variations in space weather. Our research takes advantage of this behavior by utilizing observations of debris objects to infer the space environment parameters influencing their motion.The hypothesis of this research is that it is possible to utilize debris objects as passive, indirect sensors of the space environment. We focus on estimating atmospheric density and its spatial variability to allow for more precise prediction of LEO object motion. The estimated density is parameterized as a grid of values, distributed by latitude and local sidereal time over a spherical shell encompassing Earth at a fixed altitude of 400 km. The position and velocity of each debris object are also estimated. A Partially Orthogonal Ensemble Kalman Filter (POEnKF) is used for assimilation of space object measurements to estimate density.For performance comparison, the scenario characteristics (number of objects, measurement cadence, etc.) are based on a sensor tasking campaign executed for the High Accuracy Satellite Drag Model project. The POEnKF analysis details spatial comparisons between the true and estimated density fields, and quantifies the improved accuracy in debris object motion predictions due to more accurate drag force models from density estimates. It is shown that there is an advantage to utilizing multiple debris objects instead of just one object. Although the work presented here explores the POEnKF performance when using information from only 16 debris objects, the research vision is to utilize information from all routinely observed debris objects. Overall, the filter demonstrates the ability to estimate density to within a threshold of accuracy dependent on measurement/sensor error. In the case of a geomagnetic storm, the filter is able to track the storm and provide more accurate density estimates than would be achieved using a simple exponential atmospheric density model or MSIS Atmospheric Model (when calm conditions are assumed).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号