首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
航空   1篇
航天技术   2篇
  2021年   1篇
  2019年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
An algorithm for retrieval of surface waters cell concentrations (in cell/ml) for three picophytoplankton components, Prochlorococcus (Pro), Synechococcus (Syn), and picoeukaryotes (Peuk) in the South China Sea (SCS), from ocean colour satellite data was developed and tested. Level 3 merged multisensor Ocean Colour Climate Change Initiative satellite data is used. Training is performed using in situ data on abundances of the three phytoplankton components. Several predictors derived from satellite reflectance data were tested. The regression form that assures the highest accuracy of the algorithm was chosen based on cross-validation (CV). According to the CV on test data subset, the algorithm performance is characterized by the r value 0.89, 0.72, and 0.73 and MAPD 38, 71 and 51% for Peuk, Pro, and Syn respectively. This is one of the few studies aimed at the Peuk, Pro, and Syn distribution research in the northern SCS using ocean colour satellite data. This is the only research providing algorithm with accuracy estimates of the Peuk, Pro, and Syn concentrations retrieval from the ocean colour data. Analysis of the developed algorithm allows us to conclude that both mechanisms (specific spectral features caused by pigments composition and spectrum features sensitive to general primary productivity, e.g. band ratios in 443–510?nm range and spectrum absolute values) are important for getting accurate information on the picophytoplankton composition.  相似文献   
2.
基于IRI背景场的单站电离层TEC地图重构技术   总被引:4,自引:1,他引:3  
为了有效解决电离层TEC观测数据稀疏时重构问题, 引入IRI-2007作为背景场, 利用反距离加权法和克里格方法重构了电离层TEC地图, 使用交叉检验方法检验了引入背景场前后的重构精度. 结果表明, 引入背景场后, 一方面有效地控制了边缘地区的发散现象, 另一方面重构网格点上绝对误差在 -0.25~0.25 TECU之间的比例分别提高了约70 %和100 %, 误差统计基本呈正态分布. 可以通过引入更加精确的背景场或使用逐步订正方法进一步提高重构精度.   相似文献   
3.
《中国航空学报》2021,34(8):16-33
The Efficient Global Optimization (EGO) algorithm has been widely used in the numerical design optimization of engineering systems. However, the need for an uncertainty estimator limits the selection of a surrogate model. In this paper, a Sequential Ensemble Optimization (SEO) algorithm based on the ensemble model is proposed. In the proposed algorithm, there is no limitation on the selection of an individual surrogate model. Specifically, the SEO is built based on the EGO by extending the EGO algorithm so that it can be used in combination with the ensemble model. Also, a new uncertainty estimator for any surrogate model named the General Uncertainty Estimator (GUE) is proposed. The performance of the proposed SEO algorithm is verified by the simulations using ten well-known mathematical functions with varying dimensions. The results show that the proposed SEO algorithm performs better than the traditional EGO algorithm in terms of both the final optimization results and the convergence rate. Further, the proposed algorithm is applied to the global optimization control for turbo-fan engine acceleration schedule design.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号