首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航天技术   3篇
  2010年   1篇
  2008年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
We discuss current progress and future plans for the general antiparticle spectrometer experiment (GAPS). GAPS detects antideuterons through the X-rays and pions emitted during the deexcitation of exotic atoms formed when the antideuterons are slowed down and stopped in targets. GAPS provides an exceptionally sensitive means to detect cosmic-ray antideuterons. Cosmic-ray antideuterons can provide indirect evidence for the existence of dark matter in such form as neutralinos or Kaluza–Klein particles. We describe results of accelerator testing of GAPS prototypes, tentative design concepts for a flight GAPS detector, and near-term plans for flying a GAPS prototype on a balloon.  相似文献   
2.
The effect of various models presented by Leamon et al. (2000) for the dissipation range cutoff wavenumber on the 26-day variations of galactic cosmic-ray electrons in a Fisk-Parker hybrid field is investigated, by means of a three-dimensional steady-state numerical modulation code. Analytical expressions for the mean free paths parallel and perpendicular to the heliospheric magnetic field are adapted from the works of 31 and 28, respectively. Note that only solar minimum conditions are considered, and that only qualitative agreement with data is sought. Effective diffusion for galactic electrons pertaining to 26-day variations is found to be dominated by the ratio of the perpendicular to parallel mean free paths at low energies, and the relationship between changes in cosmic-ray intensities and the modulation parameter postulated by Zhang (1997) is found to no longer hold when this ratio drops below a critical value. Use of ion inertial scale dependent models for the dissipation range cutoff leads to possible second linearities in the relative amplitudes as functions of latitude gradient.  相似文献   
3.
In this review article the current status of particle dark matter is addressed. We discuss the main theoretical extensions of the standard model which allow to explain dark matter in terms of a (yet undiscovered) elementary particle. We then discuss the theoretical predictions for the searches of particle dark matter: direct detection in low-background underground experiments and indirect detection of neutrinos, gamma-rays and antimatter with terrestrial and space-borne detectors. Attention will be placed also on the discussion of the uncertainties, mainly of astrophysical origin, which affect the theoretical predictions. The constraints placed by these searches on the extensions of the standard models will be briefly addressed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号