首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
航空   4篇
航天技术   8篇
  2012年   2篇
  2008年   4篇
  2007年   4篇
  2004年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched on August 3, 2004, is nearing the halfway point on its voyage to become the first probe to orbit the planet Mercury. The mission, spacecraft, and payload are designed to answer six fundamental questions regarding the innermost planet: (1) What planetary formational processes led to Mercury’s high ratio of metal to silicate? (2) What is the geological history of Mercury? (3) What are the nature and origin of Mercury’s magnetic field? (4) What are the structure and state of Mercury’s core? (5) What are the radar-reflective materials at Mercury’s poles? (6) What are the important volatile species and their sources and sinks near Mercury? The mission has focused to date on commissioning the spacecraft and science payload as well as planning for flyby and orbital operations. The second Venus flyby (June 2007) will complete final rehearsals for the Mercury flyby operations in January and October 2008 and September 2009. Those flybys will provide opportunities to image the hemisphere of the planet not seen by Mariner 10, obtain high-resolution spectral observations with which to map surface mineralogy and assay the exosphere, and carry out an exploration of the magnetic field and energetic particle distribution in the near-Mercury environment. The orbital phase, beginning on March 18, 2011, is a one-year-long, near-polar-orbital observational campaign that will address all mission goals. The orbital phase will complete global imaging, yield detailed surface compositional and topographic data over the northern hemisphere, determine the geometry of Mercury’s internal magnetic field and magnetosphere, ascertain the radius and physical state of Mercury’s outer core, assess the nature of Mercury’s polar deposits, and inventory exospheric neutrals and magnetospheric charged particle species over a range of dynamic conditions. Answering the questions that have guided the MESSENGER mission will expand our understanding of the formation and evolution of the terrestrial planets as a family.  相似文献   
2.
3.
We observed sodium emission from Mercury’s atmosphere using a Fabry–Perot Interferometer at Haleakala Observatory on June 14, 2006. The Fabry–Perot Interferometer was used as a wavelength-tunable filter. The spectra of the surface reflection were subtracted from the observed spectra because sodium emission is contaminated by the surface reflection of Mercury. The image obtained in our observation shows the sodium exosphere extended to the anti-solar direction. The lifetime of a sodium atom was estimated to be 1.6 × 104 to 1.9 × 105 s with an error by a factor of 3–4.  相似文献   
4.
采用已经建立的环电流离子解析模型,结合Chamberlain地冕中性层模型,研究了2004年11月一次大磁暴期间的环电流区域中性原子(ENA)图像.结果表明,模拟的ENA图像与TC-2卫星搭载的中性原子成像仪(NUAUD)的观测图像在方位角或地方时分布、高度或纬度分布和能谱分布方面存在一定的差异.如果依据磁暴发展的不同阶段来选择环电流离子模型的方位角不对称因子和通量最大方向的方位角,增大地冕中性层在低高度区域的密度或者考虑氢(H)以外的其他中性成分,改进注入边界处的离子能谱分布函数,且考虑不同种类环电流离子的比例随磁暴发展可能发生的变化,该模型有望产生更符合观测的模拟ENA图像.  相似文献   
5.
The existence of a surface-bounded exosphere about Mercury was discovered through the Mariner 10 airglow and occultation experiments. Most of what is currently known or understood about this very tenuous atmosphere, however, comes from ground-based telescopic observations. It is likely that only a subset of the exospheric constituents have been identified, but their variable abundance with location, time, and space weather events demonstrate that Mercury’s exosphere is part of a complex system involving the planet’s surface, magnetosphere, and the surrounding space environment (the solar wind and interplanetary magnetic field). This paper reviews the current hypotheses and supporting observations concerning the processes that form and support the exosphere. The outstanding questions and issues regarding Mercury’s exosphere stem from our current lack of knowledge concerning the surface composition, the magnetic field behavior within the local space environment, and the character of the local space environment.  相似文献   
6.
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) is one of seven science instruments onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft en route to the planet Mercury. MASCS consists of a small Cassegrain telescope with 257-mm effective focal length and a 50-mm aperture that simultaneously feeds an UltraViolet and Visible Spectrometer (UVVS) and a Visible and InfraRed Spectrograph (VIRS). UVVS is a 125-mm focal length, scanning grating, Ebert-Fastie monochromator equipped with three photomultiplier tube detectors that cover far ultraviolet (115–180 nm), middle ultraviolet (160–320 nm), and visible (250–600 nm) wavelengths with an average 0.6-nm spectral resolution. It will measure altitude profiles of known species in order to determine the composition and structure of Mercury’s exosphere and its variability and will search for previously undetected exospheric species. VIRS is a 210-mm focal length, fixed concave grating spectrograph equipped with a beam splitter that simultaneously disperses the spectrum onto a 512-element silicon visible photodiode array (300–1050 nm) and a 256-element indium-gallium-arsenide infrared photodiode array 850–1,450 nm. It will obtain maps of surface reflectance spectra with a 5-nm resolution in the 300–1,450 nm wavelength range that will be used to investigate mineralogical composition on spatial scales of 5 km. UVVS will also observe the surface in the far and middle ultraviolet at a 10-km or smaller spatial scale. This paper summarizes the science rationale and measurement objectives for MASCS, discusses its detailed design and its calibration requirements, and briefly outlines observation strategies for its use during MESSENGER orbital operations around Mercury.  相似文献   
7.
The atmosphere of Mercury is of an exospheric nature. Its formation is due to several physical mechanisms including meteoroid impact, surface sputtering by solar wind ions and photon sputtering by solar UV radiation. The molecules and atoms emitted from the surface materials of Mercury include H, He, O, Ar, and S, etc. It is important to study their spatial distributions across the planetary surface via ballistic random walk. We have developed a surface thermal model coupled with Hodges-type Monte Carlo calculations to simulate the exosphere of Mercury, which will be a major scientific target of the BepiColombo mission of ESA and JAXA.  相似文献   
8.
BepiColombo, a mission of ESA (European Space Agency) in cooperation with JAXA (Japan Aerospace Exploration Agency), will explore Mercury, the planet closest to the Sun. BepiColombo will launch in 2014 on a journey lasting up to six and a half years; the data gathering phase should occupy a one year nominal mission, with a possible extension of another year. The data which will be brought back from the orbiters will tell us about the Hermean surface, atmospheric composition, and magnetospheric dynamics; it will also contribute to understanding the history and formation of terrestrial planets. The PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) instrument will be flown on MPO: Mercury Planetary Orbiter, one of the two BepiColombo orbiters. The main purpose of the instrument is to reveal the composition and the distribution of the exosphere of Mercury through EUV (Extreme Ultraviolet: 55–155 nm) and FUV (Far Ultraviolet: 145–315 nm) measurements. A consortium composed of four main countries has been formed to build it. Japan provides the two detectors (EUV and FUV), Russia implements the scanning system, and France and Italy take charge of the overall design, assembly, test, integration, and also provide two small NUV (Near Ultraviolet) detectors (for the light from calcium and potassium molecules). An optical prototype of the EUV detector which is identical to the flight configuration has been manufactured and evaluated. In this paper, we show the first spectra results observed by the EUV channel optical prototype. We also describe the design of PHEBUS and discuss the possibility of detecting noble gases in Mercury’s exosphere taking the experimental results so far into account.  相似文献   
9.
MEMORIS (MErcury Moderate Resolution Imaging System) is a wide angle camera (WAC) concept for the ESA mission BepiColombo. The main scientific objectives consist of observing the whole surface of Mercury in the spectral range of 400–1000 nm, with a spatial resolution of 50 m per pixel at peri-Herm (400 km) and 190 m at apo-Herm (1500 km). It will obtain a map of Mercury in stereo mode allowing the determination of a digital elevation model with a panchromatic filter through two different channels. The camera will also perform multispectral imaging of the surface with a set of 8–12 different broad band filters. A third channel dedicated to limb observations will provide images of the atmosphere. MEMORIS will thus monitor the surface and the atmosphere during the entire mission, providing a unique opportunity to study the relationship between surface regions and the atmosphere, as suggested by ground-based observations and theory.  相似文献   
10.
A consideration is given to the generation of field-aligned currents under different solar wind conditions. The preliminary results from a set of resistive MHD calculations indicate that the field-aligned current system could be significantly changed by the orientation of the interplanetary magnetic field. For most of the cases studied, the total current is less than or on the order of 105 A. Even though this current is at least a factor of 10 smaller than its counter part at Earth, it might still produce some important dynamical effects with interesting consequence on the sporadic behavior of Mercury’s atomic sodium emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号