首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
航空   13篇
航天技术   6篇
综合类   3篇
航天   4篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1975年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Thermodynamic conditions suggest that clathrates might exist on Mars. Despite observations which show that the dominant condensed phases on the surface of Mars are solid carbon dioxide and water ice, clathrates have been repeatedly proposed to play an important role in the distribution and total inventory of the planet’s volatiles. Here we review the potential consequences of the presence of clathrates on Mars. We investigate how clathrates could be a potential source for the claimed existence of atmospheric methane. In this context, plausible clathrate formation processes, either in the close subsurface or at the base of the cryosphere, are reviewed. Mechanisms that would allow for methane release into the atmosphere from an existing clathrate layer are addressed as well. We also discuss the proposed relationship between clathrate formation/dissociation cycles and how potential seasonal variations influence the atmospheric abundances of argon, krypton and xenon. Moreover, we examine several Martian geomorphologic features that could have been generated by the dissociation of extended subsurface clathrate layers. Finally we investigate the future in situ measurements, as well as the theoretical and experimental improvements that will be needed to better understand the influence of clathrates on the evolution of Mars and its atmosphere.  相似文献   
2.
During the last decade a large number of radars (~12) have been developed, which have produced substantial quantities of tidally-corrected mean winds data. The distribution of the radars is not global, but many areas are well covered: the Americas with Poker Flat (65°N), Saskatoon (52°N), Durham (43°N), Atlanta (34°N), Puerto Rico (18°N); Europe with Kiruna (68°), Garchy (47°N) and Monpazier (44°N); and Oceania with Christchurch (44°S), Adelaide (35°S), Townsville (20°S), and Kyoto (35°N). Zonal and meridional wind height-time cross-sections from 6080 km (MF/Meteor Radar) to ~110 km have been prepared for the last 5–6 years. They are compared with cross-sections from CIRA-72 for zonal winds, and Groves (1969) for meridional winds.It is shown that while CIRA-72 is still a useful model for many purposes, significant differences exist between it and the new radar data. The latter demonstrate important seasonal, latitudinal, longitudinal and hemispheric variations. The new meridional cross-sections are of great value. The common features with Groves (1969) are the equatorward cells in summer near 85 km; however their strength (~10 ms?1) and size are less. Systematic and somewhat different variations emerge at higher (?52°N) and middle (35–44°) latitudes.  相似文献   
3.
4.
5.
6.
7.
The study of the variability of the solar corona and the monitoring of its traditional regions (Coronal Holes, Quiet Sun and Active Regions) are of great importance in astrophysics as well as in view of the Space Weather and Space Climate applications. Here we propose a multichannel unsupervised spatially constrained fuzzy clustering algorithm that automatically segments EUV solar images into Coronal Holes, Quiet Sun and Active Regions. Fuzzy logic allows to manage the various noises present in the images and the imprecision in the definition of the above regions. The process is fast and automatic. It is applied to SoHO–EIT images taken from February 1997 till May 2005, i.e. along almost a full solar cycle. Results in terms of areas and intensity estimations are consistent with previous knowledge. The method reveal the rotational and other mid-term periodicities in the extracted time series across solar cycle 23. Further, such an approach paves the way to bridging observations between spatially resolved data from imaging telescopes and time series from radiometers. Time series resulting form the segmentation of EUV coronal images can indeed provide an essential component in the process of reconstructing the solar spectrum.  相似文献   
8.
<正>Early indications of the state of the business aircraft sales market point in decidedly different directions-at least based on evidence from Q1 2019 earnings calls for publicly traded companies, aircraft sales databases, and presentations and conversations from various industry conferences.New aircraft sales appear to have got off to a good start in the first three months of the year, with four of the big five OEMs reporting book-to-bill  相似文献   
9.
Clays form on Earth by near-surface weathering, precipitation in water bodies within basins, hydrothermal alteration (volcanic- or impact-induced), diagenesis, metamorphism, and magmatic precipitation. Diverse clay minerals have been detected from orbital investigation of terrains on Mars and are globally distributed, indicating geographically widespread aqueous alteration. Clay assemblages within deep stratigraphic units in the Martian crust include Fe/Mg smectites, chlorites and higher temperature hydrated silicates. Sedimentary clay mineral assemblages include Fe/Mg smectites, kaolinite, and sulfate, carbonate, and chloride salts. Stratigraphic sequences with multiple clay-bearing units have an upper unit with Al-clays and a lower unit with Fe/Mg-clays. The typical restriction of clay minerals to the oldest, Noachian terrains indicates a distinctive set of processes involving water-rock interaction that was prevalent early in Mars history and may have profoundly influenced the evolution of Martian geochemical systems. Current analyses of orbital data have led to the proposition of multiple clay-formation mechanisms, varying in space and time in their relative importance. These include near-surface weathering, formation in ice-dominated near-surface groundwaters, and formation by subsurface hydrothermal fluids. Near-surface, open system formation of clays would lead to fractionation of Mars’ crustal reservoir into an altered crustal reservoir and a sedimentary reservoir, potentially involving changes in the composition of Mars’ atmosphere. In contrast, formation of clays in the subsurface by either aqueous alteration or magmatic cooling would result in comparatively little geochemical fractionation or interaction of Mars’ atmospheric, crustal, and magmatic reservoirs, with the exception of long-term sequestration of water. Formation of clays within ice would have geochemical consequences intermediate between these endmembers. We outline the future analyses of orbital data, in situ measurements acquired within clay-bearing terrains, and analyses of Mars samples that are needed to more fully elucidate the mechanisms of martian clay formation and to determine the consequences for the geochemical evolution of the planet.  相似文献   
10.
Due to ultraviolet flux to the surface layers of most solar system bodies, future astrobiological research is increasingly seeking to conduct subsurface penetration, drilling and sampling to detect chemical signature of extant or extinct life. To seek a compact solution to this issue, we present a micro-penetrator concept (mass < 10 kg) that is suited for planetary deployment and in situ investigation of chemical and physical properties. To draw inspiration from nature, a biomimetic drill and sampler subsystem is designed as a penetrator instrument based on the working mechanism of a wood wasp ovipositor to sample beneath the sterile layer for biomarker detection. One of the major limitations of sampling in relatively low gravity environments (such as asteroids, Mars, etc) is the need for high axial force when using conventional drills. The ovipositor drill is proposed to address this limitation by applying a novel concept of reciprocating motion that requires no external force. It is lightweight (0.5 kg), driven at low power (3 W), and able to drill deep (1-2 m). Tests have shown that a reciprocating drill is feasible and has the potential of improving drill efficiency without receiving any external force. As part of the European space agency (ESA) project on bionics and space system design [1], this study provides a conceptual design of the micro-penetrator targeted for a near earth asteroid mission. With bionics-enabling technology, the overall penetration/drilling/sampling system provides a small, light and energy efficient solution to in situ astrobiological studies, which is crucial for space exploration. Such a micro-penetrator can be used for exploration of terrestrial-type planets or other small bodies of the solar system with a moderate level of modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号