首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   1篇
航天技术   2篇
航天   1篇
  2021年   2篇
  2010年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 62 毫秒
1
1.
Lake water height is a key variable in water cycle and climate change studies, which is achievable using satellite altimetry constellation. A method based on data processing of altimetry from several satellites has been developed to interpolate mean lake surface (MLS) over a set of 22 big lakes distributed on the Earth. It has been applied on nadir radar altimeters in Low Resolution Mode (LRM: Jason-3, Saral/AltiKa, CryoSat-2) in Synthetic Aperture Radar (SAR) mode (Sentinel-3A), and in SAR interferometric (SARin) mode (CryoSat-2), and on laser altimetry (ICESat). Validation of the method has been performed using a set of kinematic GPS height profiles from 18 field campaigns over the lake Issykkul, by comparison of altimetry’s height at crossover points for the other lakes and using the laser altimetry on ICESat-2 mission. The precision reached ranges from 3 to 7 cm RMS (Root Mean Square) depending on the lakes. Currently, lake water level inferred from satellite altimetry is provided with respect to an ellipsoid. Ellipsoidal heights are converted into orthométric heights using geoid models interpolated along the satellite tracks. These global geoid models were inferred from geodetic satellite missions coupled with absolute and regional anomaly gravity data sets spread over the Earth. However, the spatial resolution of the current geoid models does not allow capturing short wavelength undulations that may reach decimeters in mountaineering regions or for rift lakes (Baikal, Issykkul, Malawi, Tanganika). We interpolate in this work the geoid height anomalies with three recent geoid models, the EGM2008, XGM2016 and EIGEN-6C4d, and compare them with the Mean Surface of 22 lakes calculated using satellite altimetry. Assuming that MLS mimics the local undulations of the geoid, our study shows that over a large set of lakes (in East Africa, Andean mountain and Central Asia), short wavelength undulations of the geoid in poorly sampled areas can be derived using satellite altimetry. The models used in this study present very similar geographical patterns when compared to MLS. The precision of the models largely depends on the location of the lakes and is about 18 cm, in average over the Earth. MLS can serve as a validation dataset for any future geoid model. It will also be useful for validation of the future mission SWOT (Surface Water and Ocean Topography) which will measure and map water heights over the lakes with a high horizontal resolution of 250 by 250 m.  相似文献   
2.
The European Student Moon Orbiter (ESMO) spacecraft is a student-built mini satellite being designed for a mission to the Moon. Designing and launching mini satellites are becoming a current trend in the space sector since they provide an economic way to perform innovative scientific experiments and in-flight demonstration of novel space technologies. The generation, storage, control, and distribution of the electrical power in a mini satellite represents unique challenges to the power engineer since the mass and volume restrictions are very stringent. Regardless of these problems, every subsystem and payload equipment must be operated within their specified voltage band whenever they required to be turned on. This paper presents the preliminary design of a lightweight, compact, and reliable power system for ESMO that can generate 720 W. Some of the key components of the EPS include ultra triple-junction (UTJ) GaAs solar cells controlled by maximum power point trackers, and high efficiency Li-ion secondary batteries recharged in parallel.  相似文献   
3.
In the context of the ESA Climate Change Initiative project, a new coastal sea level altimetry product has been developed in order to support advances in coastal sea level variability studies. Measurements from Jason-1,2&3 missions have been retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker and then ingested in the X-TRACK software with the best possible set of altimetry corrections. These two coastal altimetry processing approaches, previously successfully validated and applied to coastal sea level research, are combined here for the first time in order to derive a 16-year-long (June 2002 to May 2018), high-resolution (20-Hz), along-track sea level dataset in six regions: Northeast Atlantic, Mediterranean Sea, West Africa, North Indian Ocean, Southeast Asia and Australia. The study demonstrates that this new coastal sea level product called X-TRACK/ALES is able to extend the spatial coverage of sea level altimetry data ~3.5 km in the land direction, when compared to the X-TRACK 1-Hz dataset. We also observe a large improvement in coastal sea level data availability from Jason-1 to Jason-3, with data at 3.6 km, 1.9 km and 0.9 km to the coast on average, for Jason-1, Jason-2 and Jason-3, respectively. When combining measurements from Jason-1 to Jason-3, we reach a distance of 1.2–4 km to the coast. When compared to tide gauge data, the accuracy of the new altimetry near-shore sea level estimations also improves. In terms of correlations with a large set of independent tide gauge observations selected in the six regions, we obtain an average value of 0.77. We also show that it is now possible to derive from the X-TRACK/ALES product an estimation of the ocean current variability up to 5 km to the coast. This new altimetry dataset, freely available, will provide a valuable contribution of altimetry in coastal marine research community.  相似文献   
4.
Since the turn of the century, experiments have produced laboratory fluid dynamos that enable a study of the effect in controlled conditions. We review here magnetic induction processes that are believed to underlie dynamo action, and we present results of these dynamo experiments. In particular, we detail progress that have been made through the study of von Kármán flows, using gallium or sodium as working fluids.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号