首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   2篇
航空   6篇
航天技术   1篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
FGM板三维层合模型及热-噪声载荷下的动态响应研究   总被引:1,自引:0,他引:1  
贺尔铭  胡亚琪  张钊  赵志彬 《航空学报》2013,34(6):1293-1300
 为了有效地分析热-噪声联合载荷作用下的飞行器功能梯度壁板结构的非线性动态响应,提出了运用复合材料多层壳单元建立功能梯度材料(FGM)板的层合有限元建模新方法,研究了FGM板在热曲屈前、后状态下复杂的非线性时域动态响应特性,并探讨了梯度指数、热曲屈系数及声压级(SPL)等参数对FGM板非线性动态跳变响应的影响规律。FGM板三维层合建模新方法避免了采用常规有限元法(FEM)建模时需要在厚度方向划分大量单元的缺点;求解FGM板非线性动态响应时采用的隐式积分方案避免了模态叠加法对参与模态选择的经验性要求及模态截断造成的信息丢失等缺陷。仿真结果表明:FGM板层合有限元建模新方法合理可行、过程简便、计算精度高;研究发现:陶瓷-金属FGM板在热屈曲后的抗声振性能并不像热屈曲前那样介于金属板和陶瓷板之间,而是表现最差;热屈曲系数及声压级的组合形式是导致FGM板发生非线性跳变响应的主要影响因素。  相似文献   
2.
碳/玻混杂复合材料在工业应用中表现出巨大的应用潜力。基于红外热像法试验研究了碳/玻混杂复合材料层压板与2种非混杂材料低速冲击下的红外辐射特征。通过目视、超声C扫描和光学显微镜等方法确定冲击后层压板的损伤模式,分析热图序列的时序变化特征和温度分布特征,从而表征冲击过程中的热耗散效应。结果表明:红外热成像技术非常适合监测低速冲击下纤维增强复合材料的损伤过程,通过热图序列可以建立起监测特征与各损伤模式之间的联系;同时发现碳/玻纤维的层间混杂可有效提升碳纤维强基复合材料(CFRP)的抗分层能力,随着冲击能量增加其抗分层能力愈加明显,冲击后的碳/玻混杂复合材料兼具较大的表面损伤和较小的分层损伤,拥有较好的损伤容限。  相似文献   
3.
针对典型失谐叶盘结构振动响应局部化实验需求,通过有限元仿真验证实验的最坏叶片失谐模式,基于ANSYS软件的直接耦合场压电分析功能,对粘贴在叶片根部的各压电陶瓷片施加行波谐激励电压,模拟了失谐叶盘的振动响应局部化特性。数值仿真结果与实验结果得到了良好的验证,为进行失谐叶盘振动局部化实验研究提供了有效的支撑。  相似文献   
4.
杨正伟  赵志彬  李胤  宋远佳  寇光杰  李磊  程鹏飞 《航空学报》2021,42(5):524239-524239
为探究含冲击损伤CFRP层合板在循环交变载荷下的损伤演化规律,基于热力耦合效应研究了含损伤CFRP层合板疲劳过程中的表面红外辐射特征。以压-压疲劳试验模拟交变载荷,采用红外热成像方法分析了疲劳过程中含损伤CFRP层合板的热图序列和温度数据,结果表明:随着疲劳次数的增加,损伤沿垂直疲劳载荷方向演化,热斑颜色逐渐加深,初始冲击损伤形状逐渐演化为椭圆状,最后热斑横向端部出现"尖点";试件最大表面温差演化整体呈"快速上升-缓慢上升-快速上升"规律,最后出现跳升,其中热斑尖点、最大表面温差跳升可被视为结构疲劳破坏的前兆;含损伤CFRP层合板疲劳破坏时,其最大表面温差主要与纤维和基体种类有关,而试件铺层方式相较于纤维基体类别对最大表面温差无明显影响。研究揭示了冲击后CFRP层合板在疲劳载荷作用下的损伤演化规律,为飞行器复合材料结构的剩余疲劳寿命评估与损伤容限设计奠定了基础。  相似文献   
5.
6.
叶盘系统频率转向与模态耦合特性分析   总被引:3,自引:2,他引:1  
叶盘系统频率转向现象是系统模态间相互耦合的结果,并在较大程度上影响系统的振动特性.本文以系统模态能量的角度,从叶盘系统特征方程中导出各子模态能量的表达式,并利用集中参数模型,系统地研究了叶盘系统频率转向特性与系统模态中各子模态能量的变化规律.通过研究叶盘模态耦合能量的变化特性,较为全面地分析和总结了系统频率转向与各子模态能量变化之间的内在联系.   相似文献   
7.
针对机载悬挂物管理系统的特点,提出了一种悬挂物管理软件的架构设计和通用武器插件的接口方法,实现武器发射控制流程在不同飞机平台间的通用化和标准化,提高悬挂物管理软件开发的效率和软件质量。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号