首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
航空   12篇
航天技术   15篇
航天   8篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有35条查询结果,搜索用时 55 毫秒
1.
The aim of this study is to evaluate whatare the dimensions of a panorama of discretelandmarks that a rodent will store in order toreturn to a previously visited target. Ratswere trained to locate a hidden platform in acircular pool of clouded water set within aquasi-spherical enclosure. In order to find theplatform, they had to learn the geometricrelations between the platform and asurrounding set of three discrete landmarks,highly visible through the transparent wall ofthe pool. In test trials without a platform,the array of landmarks was so manipulated as todissociate the effect of actual distance to thelandmarks, of their angular separation, and oftheir apparent dimension. Animals were shown torely equally on angular separation and apparentdimension. The role of actual distance couldnot be definitely ascertained, as animals wereshown to additionally rely on the distance tothe pool wall in order to locate theplatform.  相似文献   
2.
3.
The surfaces of the Solar System’s icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites.  相似文献   
4.
The Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measures scattered sun light also in limb viewing mode (i.e. tangential to Earth’s surface and its atmosphere), which allows determining vertical profiles of atmospheric trace gases. First results on the retrieval of NO2, BrO and OClO profiles from the SCIAMACHY Limb measurements are presented and compared to independent satellite and balloon borne observations.  相似文献   
5.
6.
World-ocean distribution of the crossover altimetry data from Geosat, TOPEX/Poseidon (T/P) and the ERS 1 missions have provided strong independent evidence that NASA's/CSR's JGM 2 geopotential model (70 × 70 in spherical harmonics) yields accurate radial ephemerides for these satellites. In testing the sea height crossover differences found from altimetry and JGM 2 orbits for these satellites, we have used the sea height differences themselves (of ascending minus descending passes averaged at each location over many exact repeat cycles) and the Lumped Latitude Coefficients (LLC) derived from them. For Geosat we find the geopotential-induced LLC errors (exclusive of non-gravitational and initial state discrepancies) mostly below 6 cm, for TOPEX the corresponding errors are usually below 2 cm, and for ERS 1 (35-day cycle) they are generally below 5 cm. In addition, we have found that these observations agree well overall with predictions of accuracy derived from the JGM 2 variance-covariance matrix; the corresponding projected LLC errors for Geosat, T/P, and ERS 1 are usually between 1 and 4 cm, 1 – 2 cm, and 1 – 4 cm, respectively (they depend on the filtering of long-periodic perturbations and on the order of the LLC). This agreement is especially impressive for ERS 1 since no data of any kind from this mission was used in forming JGM 2.

The observed crossover differences for Geosat, T/P and ERS 1 are 8, 3, and 11 cm (rms), respectively. These observations also agree well with prediction of accuracy derived from the JGM 2 variance-covariance matrix; the corresponding projected crossover errors for Geosat and T/P are 8 cm and 2.3 cm, respectively. The precision of our mean difference observations is about 3 cm for Geosat (approx. 24,000 observations), 1.5 cm for T/P (approx. 6,000 observations) and 5 cm for ERS 1 (approx. 44,000 observations). Thus, these “global” independent data should provide a valuable new source for improving geopotential models. Our results show the need for further correction of the low order JGM 2 geopotential as well as certain resonant orders for all 3 satellites.  相似文献   

7.
Continuous flow electrophoresis (CFE) is a mild and high-resolving method for the separation of sensitive biomolecules like peptides and proteins. The resolution is decreased by several effects, of which density gradients are important since they lead to buoyancy-driven convection. A tool for the measurement of physical quantities that cause the separation process, a potentialgradient/conductivity-scanner has been developed. With this PC-scanner consecutive potential- and concentration profiles can be measured inside the CFE-chamber. Local current densities and local joule heat yielding density gradients are calculated from the measurement data. With the PC-scanner the influence of gravity on separations by CFE can be evaluated more easily by the knowledge of the thermal and electrical conditions inside the separation slit.  相似文献   
8.
ESA??s hard X-ray and soft gamma-ray observatory INTEGRAL is covering the 3 keV to 10 MeV energy band, with excellent sensitivity during long and uninterrupted observations of a large field of view (??100 square degrees), with ms time resolution and keV energy resolution. It links the energy band of pointed soft X-ray missions such as XMM-Newton with that of high-energy gamma-ray space missions such as Fermi and ground based TeV observatories. Key results obtained so far include the first sky map in the light of the 511 keV annihilation emission, the discovery of a new class of high mass X-ray binaries and detection of polarization in cosmic high energy radiation. For the foreseeable future, INTEGRAL will remain the only observatory allowing the study of nucleosynthesis in our Galaxy, including the long overdue next nearby supernova, through high-resolution gamma-ray line spectroscopy. Science results to date and expected for the coming mission years span a wide range of high-energy astrophysics, including studies of the distribution of positrons in the Galaxy; reflection of gamma-rays off clouds in the interstellar medium near the Galactic Centre; studies of black holes and neutron stars particularly in high- mass systems; gamma-ray polarization measurements for X-ray binaries and gamma-ray bursts, and sensitive detection capabilities for obscured active galaxies with more than 1000 expected to be found until 2014. This paper summarizes scientific highlights obtained since INTEGRAL??s launch in 2002, and outlines prospects for the INTEGRAL mission.  相似文献   
9.
Deuterium fractionations in cometary ices provide important clues to the origin and evolution of comets. Mass spectrometers aboard spaceprobe Giotto revealed the first accurate D/H ratios in the water of Comet 1P/Halley. Ground-based observations of HDO in Comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp), the detection of DCN in Comet Hale-Bopp, and upper limits for several other D-bearing molecules complement our limited sample of D/H measurements. On the basis of this data set all Oort cloud comets seem to exhibit a similar ratio in H2O, enriched by about a factor of two relative to terrestrial water and approximately one order of magnitude relative to the protosolar value. Oort cloud comets, and by inference also classical short-period comets derived from the Kuiper Belt cannot be the only source for the Earth's oceans. The cometary O/C ratio and dynamical reasons make it difficult to defend an early influx of icy planetesimals from the Jupiter zone to the early Earth. D/H measurements of OH groups in phyllosilicate rich meteorites suggest a mixture of cometary water and water adsorbed from the nebula by the rocky grains that formed the bulk of the Earth may be responsible for the terrestrial D/H. The D/H ratio in cometary HCN is 7 times higher than the value in cometary H2O. Species-dependent D-fractionations occur at low temperatures and low gas densities via ion-molecule or grain-surface reactions and cannot be explained by a pure solar nebula chemistry. It is plausible that cometary volatiles preserved the interstellar D fractionation. The observed D abundances set a lower limit to the formation temperature of (30 ± 10) K. Similar numbers can be derived from the ortho-to-para ratio in cometary water, from the absence of neon in cometary ices and the presence of S2. Noble gases on Earth and Mars, and the relative abundance of cometary hydrocarbons place the comet formation temperature near 50 K. So far all cometary D/H measurements refer to bulk compositions, and it is conceivable that significant departures from the mean value could occur at the grain-size level. Strong isotope effects as a result of coma chemistry can be excluded for molecules H2O and HCN. A comparison of the cometary ratio with values found in the atmospheres of the outer planets is consistent with the long-held idea that the gas planets formed around icy cores with a high cometary D/H ratio and subsequently accumulated significant amounts of H2 from the solar nebula with a low protosolar D/H. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
10.
The National Space Biomedical Research Institute (NSBRI) is supporting the National Aeronautics and Space Administration's (NASA) education mission through a comprehensive Education and Public Outreach Program (EPOP) that communicates the excitement and significance of space biology to schools, families, and lay audiences. The EPOP is comprised of eight academic institutions: Baylor College of Medicine, Massachusetts Institute of Technology, Morehouse School of Medicine, Mount Sinai School of Medicine, Texas A&M University, University of Texas Medical Branch Galveston, Rice University, and the University of Washington. This paper describes the programs and products created by the EPOP to promote space life science education in schools and among the general public. To date, these activities have reached thousands of teachers and students around the US and have been rated very highly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号