首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   0篇
  国内免费   2篇
航空   154篇
航天技术   59篇
航天   31篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   14篇
  2017年   6篇
  2016年   3篇
  2015年   7篇
  2014年   2篇
  2013年   15篇
  2012年   5篇
  2011年   10篇
  2010年   8篇
  2009年   13篇
  2008年   12篇
  2007年   14篇
  2006年   16篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   8篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1986年   1篇
  1985年   4篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   9篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有244条查询结果,搜索用时 31 毫秒
1.
Lake water height is a key variable in water cycle and climate change studies, which is achievable using satellite altimetry constellation. A method based on data processing of altimetry from several satellites has been developed to interpolate mean lake surface (MLS) over a set of 22 big lakes distributed on the Earth. It has been applied on nadir radar altimeters in Low Resolution Mode (LRM: Jason-3, Saral/AltiKa, CryoSat-2) in Synthetic Aperture Radar (SAR) mode (Sentinel-3A), and in SAR interferometric (SARin) mode (CryoSat-2), and on laser altimetry (ICESat). Validation of the method has been performed using a set of kinematic GPS height profiles from 18 field campaigns over the lake Issykkul, by comparison of altimetry’s height at crossover points for the other lakes and using the laser altimetry on ICESat-2 mission. The precision reached ranges from 3 to 7 cm RMS (Root Mean Square) depending on the lakes. Currently, lake water level inferred from satellite altimetry is provided with respect to an ellipsoid. Ellipsoidal heights are converted into orthométric heights using geoid models interpolated along the satellite tracks. These global geoid models were inferred from geodetic satellite missions coupled with absolute and regional anomaly gravity data sets spread over the Earth. However, the spatial resolution of the current geoid models does not allow capturing short wavelength undulations that may reach decimeters in mountaineering regions or for rift lakes (Baikal, Issykkul, Malawi, Tanganika). We interpolate in this work the geoid height anomalies with three recent geoid models, the EGM2008, XGM2016 and EIGEN-6C4d, and compare them with the Mean Surface of 22 lakes calculated using satellite altimetry. Assuming that MLS mimics the local undulations of the geoid, our study shows that over a large set of lakes (in East Africa, Andean mountain and Central Asia), short wavelength undulations of the geoid in poorly sampled areas can be derived using satellite altimetry. The models used in this study present very similar geographical patterns when compared to MLS. The precision of the models largely depends on the location of the lakes and is about 18 cm, in average over the Earth. MLS can serve as a validation dataset for any future geoid model. It will also be useful for validation of the future mission SWOT (Surface Water and Ocean Topography) which will measure and map water heights over the lakes with a high horizontal resolution of 250 by 250 m.  相似文献   
2.
Observations and simulations show that Mars' atmosphere has large seasonal variations. Total atmospheric density can have an order of magnitude latitudinal variation at exobase heights. By numerical simulations we show that these latitude variations in exobase parameters induce asymmetries in the hydrogen exosphere that propagate to large distances from the planet. We show that these asymmetries in the exosphere produce asymmetries in the fluxes of energetic neutral atoms (ENAs) and soft X-rays produced by charge exchange between the solar wind and exospheric hydrogen. This could be an explanation for asymmetries that have been observed in ENA and X-ray fluxes at Mars.  相似文献   
3.
Some of the most ‘active’ galaxies in the Universe are obscured by large quantities of dust and emit a substantial fraction of their bolometric luminosity in the infrared. Observations of these infrared luminous galaxies with the Infrared Space Observatory (ISO) have provided a relatively unabsorbed view to the sources fuelling this active emission. The improved sensitivity, spatial resolution and spectroscopic capability of ISO over its predecessor Infrared Astronomical Satellite (IRAS) of enabled significant advances in the understanding of the infrared properties of active galaxies. ISO surveyed a wide range of active galaxies which, in the context of this review, includes those powered by intense bursts of star formation as well as those containing a dominant active galactic nucleus (AGN). Mid-infrared imaging resolved for the first time the dust enshrouded nuclei in many nearby galaxies, while a new era in infrared spectroscopy was opened by probing a wealth of atomic, ionic and molecular lines as well as broad band features in the mid- and far-infrared. This was particularly useful, since it resulted in the understanding of the power production, excitation and fuelling mechanisms in the nuclei of active galaxies including the intriguing but so far elusive ultraluminous infrared galaxies. Detailed studies of various classes of AGN and quasars greatly improved our understanding of the unification scenario. Far-infrared imaging and photometry revealed the presence of a new very cold dust component in galaxies and furthered our knowledge of the far-infrared properties of faint starbursts, ULIGs and quasars. We summarise almost nine years of key results based on ISO data spanning the full range of luminosity and type of active galaxies.  相似文献   
4.
The Electron Beam Instrument (F6) onFreja is the first attempt to apply the electron drift technique in a region of large ambient magnetic fields. The paper describes the operational principles, the technical realization, and the difficulties encountered in the derivation of the electric fields.  相似文献   
5.
The dynamical and chemical effects of the Galactic Wind are discussed. This wind is primarily driven by the pressure gradient of the Cosmic Rays. Assuming the latter to be accelerated in the Supernova Remnants of the disk which at the same time produce the Hot Interstellar Medium, it is argued that the gas removed by the wind is enriched in the nucleosynthesis products of Supernova explosions. Therefore the moderate mass loss through this wind should still be able to remove a substantial amount of metals, opening the way for stars to produce more metals than observed in the disk, by e.g. assuming a Salpeter-type stellar initial mass function beyond a few Solar masses. The wind also allows a global, physically appealing interpretation of Cosmic Ray propagation and escape from the Galaxy. In addition the spiral structure of the disk induces periodic pressure waves in the expanding wind that become a sawtooth shock wave train at large distances which can re-accelerate “knee” particles coming from the disk sources. This new Galactic Cosmic Ray component can reach energies of a few×1018 eV and may contribute to the juncture between the particles of Galactic and extragalactic origin in the observed overall Cosmic Ray spectrum.  相似文献   
6.
While atmospheric Cherenkov telescopes have a small field of view and a small duty fraction, arrays of particle detectors on ground have a 1 sr field of view and a 100% duty fraction. On the other hand, particle detector arrays have a much higher energy threshold and an inferior hadron rejection as compared to Cherenkov telescopes. Low threshold particle detector arrays would have potential advantages over Cherenkov telescopes in the search for episodic or unexpected sources of gamma rays in the multi-TeV energy range. Ways to improve the threshold and hadron rejection of arrays are shown, based on existing technology for the timing method (with scintillator or water Cherenkov counters) and the tracking method (with tracking detectors). The performance that could be achieved is shown by examples for both methods. At mountain altitude (about 4000 m or above) an energy threshold close to 1 TeV could be achieved. For any significant reduction of the hadronic background by selecting muon-poor showers a muon detection area of at least 1000 m2 is required, even for a compact array.  相似文献   
7.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
8.
The rates of the most important ionization processes acting in interplanetary space on interstellar H, He, C, O, Ne and Ar atoms are critically reviewed in the paper. Their long-term modulations in the period 1974 – 1994 are reexamined using updated information on relevant cross-sections as well as direct or indirect data on variations of the solar wind/solar EUV fluxes based on IMP 8 measurements and monitoring of the solar 10.7 cm radio emission. It is shown that solar cycle related variations are pronounced (factor of 3 between maximum and minimum) especially for species such as He, Ne, C for which photoionization is the dominant loss process. Species sensitive primarily to the charge-exchange (as H) show only moderate fluctuations 20% around average. It is also demonstrated that new techniques that make use of simultaneous observations of neutral He atoms on direct and indirect orbits, or simultaneous measurements of He+ and He++ pickup ions and solar wind particles can be useful tools for narrowing the uncertainties of the He photoionization rate caused by insufficient knowledge of the solar EUV flux and its variations.  相似文献   
9.
Klumpar  D.M.  Möbius  E.  Kistler  L.M.  Popecki  M.  Hertzberg  E.  Crocker  K.  Granoff  M.  Tang  Li  Carlson  C.W.  McFadden  J.  Klecker  B.  Eberl  F.  Künneth  E.  Kästle  H.  Ertl  M.  Peterson  W.K.  Shelly  E.G.  Hovestadt  D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2 + molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor.  相似文献   
10.
The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10-19 and 10-9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the Sun, to Jupiter and to its satellites, to study its interaction with the Galilean satellites and the Jovian magnetosphere. Surface phenomena of the satellites (like albedo variations), which might be effects of meteoroid impacts will be compared with the dust environment. Electric charges of particulate matter in the magnetosphere and its consequences will be studied; e.g., the effects of the magnetic field on the trajectories of dust particles and fragmentation of particles due to electrostatic disruption. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 106 times higher than that of previous in-situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits s-1 in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号