首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   1篇
航空   2篇
航天技术   4篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 140 毫秒
1
1.
采用电化学沉积法于室温、碱性条件下在氧化铟锡(ITO,Indium Tin Oxide)表面制备了硼酸钴(CoBi)、硼酸镍(NiBi)、硼酸锰(MnBi)、硼酸铑(RhBi)、硼酸钯(PdBi)几种无定形的硼酸金属化合物薄膜,并对其形貌和结构进行表征,结果表明几种薄膜均为无定形结构.将这几种硼酸金属化合物应用于电化学催化水氧化制氧,对比其催化活性,发现CoBi,NiBi,RhBi具有较高的催化性能,而MnBi和PdBi催化活性较低.进一步研究硼酸pH值对CoBi电催化水分解的影响.发现硼酸有利于金属化合物的制备,pH7~11范围内,HBO32-作为质子受体含量逐渐增大,能接受放氧过程产生的质子,促进催化水分解过程的进行.所得催化剂可自我修复,实现循环利用.  相似文献   
2.
    
采用水热合成的方法,以硫脲(NH2CSNH2)为硫源和还原剂,合成出了二硫化钼/石墨烯(Mo S2/Graphene)复合电催化剂用于电解水制氢.将其旋涂到掺杂氟的Sn O2透明导电玻璃(FTO)上制备成Mo S2/Graphene薄膜进行电催化分解水制氢性能测试.研究发现,Mo S2/Graphene的催化活性较纯纳米Mo S2提高了近一倍.这是由于通过化学耦合作用选择性生长在石墨烯上的层状Mo S2其边缘拥有丰富的活性位点,同时石墨烯作为良好的导电基体也能大大加快了电子的转移速度.在0.5 mol/L H2SO4溶液中,Mo S2/Graphene旋涂到FTO上的层数为12层时,其电催化制氢效率最高:起峰电位提前到0.085 V,在0.2 V的过电位下电流密度达到了-4.5 m A/cm2.层状Mo S2/Graphene电催化剂作为Pt族贵金属的替代品,具有广阔的应用前景.  相似文献   
3.
利用电化学沉积的方法在氧化铟锡(ITO,Indium Tin Oxide)导电玻璃表面成功地制备出了形貌均一的银纳米结构.所制备银纳米结构的形貌和密度与前驱体AgNO3的浓度、沉晶种电位、生长电位以及柠檬酸钠的加入均有着重要的关系,只有合理地设置这些参数才能制得形貌和密度均较为理想的银纳米粒子.此外以对巯基苯胺(p-ATP,p-aminothiophenol)为探针分子,在633 nm的激光激发下对银纳米结构进行了表面增强拉曼效应(SERS,Surface Enhanced Raman Scattering)的研究,结果表明其在SERS领域有着潜在的应用价值.  相似文献   
4.
用循环伏安曲线和交流阻抗谱测试技术研究了不同溶液浸泡对复合材料性能的影响,探讨了电化学表征参数与复合材料腐蚀程度之间的相关性.实验结果显示,随着浸泡时间的延长,试样的反应电阻逐渐减小,双电层电容逐渐增大,并且浸泡于酸性探针和碱性探针溶液中的试样的电化学参数比浸泡于中性探针溶液中的试样的电化学参数变化幅度更大.实验结果表明利用电化学参数的变化可以反映碳纤维增强环氧树脂基复合材料的腐蚀程度,即可以用阻抗值和电流值的大小变化表征复合材料的耐蚀性.  相似文献   
5.
利用沉淀预处理在基底上生长晶种的方法,在氧化铟锡(ITO)导电玻璃表面水热生长出分布均匀、与基底结合牢固、具有较高光电催化分解水制氧性能的ZnO纳米棒。用电助光沉积的方法将电催化剂Ni-Bi与ZnO复合,用扫描电子显微镜(SEM)、X射线衍射(XRD)及紫外可见漫反射光谱对ZnO/Ni-Bi复合光阳极的结构进行了表征,并采用电化学和光电化学技术研究了ZnO/Ni-Bi复合光阳极的光电催化分解水性能,对不同的复合方式、复合时间以及热处理对复合结构催化活性的影响进行了研究。复合Ni-Bi后,ZnO的性能获得了最高40%的提升。光阳极表面沉积的Ni-Bi分离电子空穴抑制其复合,有效地利用了ZnO产生的光生空穴,将水氧化形成氧气,从而显著提高了光照条件下ZnO催化氧化水的效率。  相似文献   
6.
小型气氢气氧火箭发动机试验系统设计研究   总被引:3,自引:3,他引:0       下载免费PDF全文
根据小型气氢气氧火箭发动机试验工况的要求设计完成1 000 N级的气氢气氧火箭发动机试验系统.介绍了供气系统的设计过程,详细讨论了气氢气氧流量与管径的选取过程,完成了比对式推力测量装置和计算机测量与控制系统的设计,并进行系统标定及冷流验证试验.该试验系统能在不同工况下开展小型火箭发动机冷热试验研究,同时实现远程计算机监控,具有较高精度.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号