首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   5篇
航空   5篇
  2017年   3篇
  2016年   1篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
端弯联合弯叶片对叶栅旋涡结构和气动性能的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
丁骏  王松涛  刘勋  王仲奇 《推进技术》2016,37(11):2072-2079
为了研究弯叶片弯角、端弯弯高和端弯弯角三个参数对扩压叶栅流道内的旋涡结构和气动性能所造成的影响大小和交互作用的主次顺序,以环形扩压叶栅为研究对象,通过正交试验设计的方法,对试验结果进行分析。结果表明,存在一个最佳弯叶片弯角以平衡集中脱落涡和壁角涡对叶栅出口总压损失分布的影响;弯叶片弯角的提高会导致壁角涡减弱并且涡核靠向端壁,集中脱落涡增强并且涡核靠向流道中部;旋涡结构的变化进而导致端部高损失区域损失减小并且靠向集中脱落涡涡核,流道中部损失增厚并且向中部收缩。端弯的弯高和弯角对角区的影响明显强于流道中部;壁角涡强度的提高导致端部损失的增加;集中脱落涡涡核向端壁移动,导致流道中部损失向端区扩散,但损失减小有限。  相似文献   
2.
亚声速扩压叶栅中弯叶片积叠规律的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了探索负荷径向非对称分布的环形扩压叶栅中弯曲叶片造型参数的选取规律,通过数值模拟的方式,对比研究了不同弯高和正弯角对两种不同分离形态的环形扩压叶栅气动性能和流道内旋涡结构的影响。研究结果表明,随着弯叶片正弯角的增大,尾缘附近的一对集中脱落涡增强并向叶展中部靠拢,随之造成了集中脱落涡和壁角涡之间区域的损失降低,同时叶展中部的总压损失增大。在集中脱落涡尚未形成的叶栅中,弯叶片则是主要作用于流道中部的尾缘脱落涡,但作用效果相对较弱。在一定的弯叶片弯高下,扩压叶栅存在最佳弯角,研究所采用的50%弯高的CDA叶栅在进口条件2下的最佳弯角约为25°,并且相同的弯叶片正弯角对叶片展向负荷较高的一端作用效果更显著。当弯叶片正弯角较大(或接近于最佳弯角)时,叶片展向负荷较高的一侧在弯叶片作用下损失峰值增加更为明显,因而在保持弯叶片的周向相对偏移一致的前提下,最佳弯高在叶展中部偏向于负荷较低的一侧。换言之,最佳弯高应偏向于扩压因子展向不均匀度更大的一侧。  相似文献   
3.
子午造型对低反动度跨声速转子气动性能影响   总被引:1,自引:1,他引:0       下载免费PDF全文
张龙新  杜鑫  丁骏  胡应交  刘勋  王松涛 《推进技术》2014,35(9):1234-1240
对于高负荷低反动度跨声速转子,子午型线造型是其设计中研究重点之一。为寻求更优的子午造型方式,借助数值模拟的方法初步研究了不同子午形式对高负荷低反动度跨声速转子气动性能的影响。结果表明,相较于直线形式的子午型线,采用正弦曲线形式的子午型线可降低激波强度,转子效率提升0.84%;合理的子午型线造型既需要控制波前马赫数不至于过高,同时又要确保激波过后轴向速度可以获得迅速提升,避免发生附面层分离再附着的现象。  相似文献   
4.
为了改善扩压叶栅端区的流动匹配,通过数值模拟的方式,以直叶片和正弯叶片扩压叶栅为应用背景,详细对比研究了不同的端弯叶片积叠方法对扩压叶栅气动性能的影响。研究结果表明,在亚声速扩压叶栅中,前缘增弯的端弯造型可以有效降低来流攻角,以相同端弯弯角为前提,最为有效的端弯积叠方式是保持尾缘不变的尾缘积叠。无论采用何种端弯积叠方式,都会造成叶片的前部或者后部的局部弯曲,对叶栅流道产生类似于弯叶片的流动控制作用。将尾缘积叠端弯造型应用于正弯叶片中,一定程度上会抵消叶片前部的正弯效果,但并不会完全抑制;而前缘积叠端弯造型则会促进叶片后部的正弯效果。在亚声速环境下直叶片流道内应用前缘增弯的端弯造型技术时,推荐采用前缘积叠的端弯造型方法;但在正弯叶片流道内应用端弯造型技术时,推荐采用尾缘积叠的端弯积叠方式。  相似文献   
5.
重型燃气轮机压气机多截面叶型优化设计   总被引:1,自引:0,他引:1       下载免费PDF全文
出于对叶型沿叶高方向的不同以及不同叶高处气动边界的不同两方面考虑,开发了一套叶片多截面叶型优化的设计流程.以单级高负荷压气机的进口导叶和大折转角静叶为优化对象,以多截面关联的性能参数为优化目标,采用考虑附面层转捩的MISES计算程序对叶型气动性能进行分析,并通过遗传算法对叶片进行优化.结果显示:在有效工作范围内,各截面叶型经优化后,前部负荷提高,中部及后部负荷降低,性能得到一定提升.三维数值模拟结果显示,在无大尺度二次流动的条件下,多截面叶型优化方法对提升叶片性能切实可行.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号