首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   1篇
航天技术   3篇
  2019年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Time-dependent cosmic ray modulation is calculated over multiple solar cycles using our well established two-dimensional time-dependent modulation model. Results are compared to Voyager 1, Ulysses and IMP cosmic ray observations to establish compatibility. A time-dependence in the diffusion and drift coefficients, implicitly contained in recent expressions derived by , ,  and , is incorporated into the cosmic ray modulation model. This results in calculations which are compatible with spacecraft observations on a global scale over consecutive solar cycles. This approach compares well to the successful compound approach of Ferreira and Potgieter (2004). For both these approaches the magnetic field magnitude, variance of the field and current sheet tilt angle values observed at Earth are transported time-dependently into the outer heliosphere. However, when results are compared to observations for extreme solar maximum, the computed step-like modulation is not as pronounced as observed. This indicates that some additional merging of these structures into more pronounced modulation barriers along the way is needed.  相似文献   
2.
The effect of various models presented by Leamon et al. (2000) for the dissipation range cutoff wavenumber on the 26-day variations of galactic cosmic-ray electrons in a Fisk-Parker hybrid field is investigated, by means of a three-dimensional steady-state numerical modulation code. Analytical expressions for the mean free paths parallel and perpendicular to the heliospheric magnetic field are adapted from the works of 31 and 28, respectively. Note that only solar minimum conditions are considered, and that only qualitative agreement with data is sought. Effective diffusion for galactic electrons pertaining to 26-day variations is found to be dominated by the ratio of the perpendicular to parallel mean free paths at low energies, and the relationship between changes in cosmic-ray intensities and the modulation parameter postulated by Zhang (1997) is found to no longer hold when this ratio drops below a critical value. Use of ion inertial scale dependent models for the dissipation range cutoff leads to possible second linearities in the relative amplitudes as functions of latitude gradient.  相似文献   
3.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was designed and constructed to withstand the harsh environments associated with achieving and operating in Mercury orbit. The system can be divided into eight subsystems: structures and mechanisms (e.g., the composite core structure, aluminum launch vehicle adapter, and deployables), propulsion (e.g., the state-of-the-art titanium fuel tanks, thruster modules, and associated plumbing), thermal (e.g., the ceramic-cloth sunshade, heaters, and radiators), power (e.g., solar arrays, battery, and controlling electronics), avionics (e.g., the processors, solid-state recorder, and data handling electronics), software (e.g., processor-supported code that performs commanding, data handling, and spacecraft control), guidance and control (e.g., attitude sensors including star cameras and Sun sensors integrated with controllers including reaction wheels), radio frequency telecommunications (e.g., the spacecraft antenna suites and supporting electronics), and payload (e.g., the science instruments and supporting processors). This system architecture went through an extensive (nearly four-year) development and testing effort that provided the team with confidence that all mission goals will be achieved. Larry E. Mosher passed away during the preparation of this paper.  相似文献   
4.
Three-dimensional studies of the transport and modulation of cosmic ray particles in turbulent astrospheres require large-scale simulations using specialized scientific codes. Essentially, a multi-dimensional Fokker-Planck type equation (a parabolic diffusion equation) must be integrated numerically. One such approach is to convert the relevant transport equation into a set of stochastic differential equations (SDEs), with the latter much easier to handle numerically. Due to the growing demand for high performance computing resources, research into the application of effective and suitable numerical algorithms to solve such equations is needed. We present a case study of the performance of a custom-written FORTRAN SDE numerical solver on the CHPC (Centre for High Performance Computing) Lengau cluster in South Africa for a realistic test problem with different set-ups. It is shown that SDE codes can scale very well on large parallel computing platforms. Finally, we consider an extremely computationally expensive application of the SDE approach to cosmic ray modulation, studying the behaviour of galactic cosmic ray proton latitude gradients and relative amplitudes in a physics-first manner. This is done using a modulation code that employs diffusion coefficients derived from first principles, which in turn are functions of turbulence quantities in reasonable agreement with spacecraft observations and modelled using a two-component turbulence transport model (TTM). We show that this approach leads to reduced latitude gradients qualitatively in line with spacecraft observations of the same, without making ad hoc assumptions as to anisotropic perpendicular diffusion coefficients as are often made in many cosmic ray modulation studies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号