首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   1篇
航天技术   1篇
  2014年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 109 毫秒
1
1.
In this paper we investigate the influence of atmospheric turbulence on the performance of the uplink of a planetary transceiver laser ranging system using a single photon detector. We numerically combine the influence of turbulence in the mean intensity profile variations, scintillation, beam-wander induced pointing errors and stochastic time-of-flight variations, using the Hufnagel–Valley turbulence profile to model the ground turbulence behavior. We map the intensity variations due to turbulence to variations in the probability distribution of the arrival time of the 1st photon in a laser pulse, which influences the range measurement error probability distribution. The turbulence models are applied to assess the influence on single-pass range accuracy and precision statistics, as well as the parameter estimation quality of a Phobos Laser Ranging (PLR) mission.  相似文献   
2.
Glacial Isostatic Adjustment (GIA) due to Pleistocene glaciation and deglaciation has left clear imprints in the present-day geoid. The solid-earth models that are commonly used in simulating these geoid anomalies usually have the upper layer (crust/lithosphere) elastic. While this is a good approximation for oceanic lithosphere, it is over-simplified for many continental crustal areas, of which some are submerged at continental margins. At many places, these continental areas have a lower crustal zone that has low viscosities. Also at the top of the mantle (asthenosphere) such zones with low viscosities can exist. Modeling results show that, due to their shallowness and due to the laterally non-homogeneous water load, these low-viscosity layers induce discernible signatures in the high-harmonic steady-state components of the geoid. These patchlike patterns have typical length scales ranging from about 100 – 1000 km, and typical magnitudes of 1 cm – 1 m, depending on, a.o., depth and width of the low-viscosity zone, viscosity and shoreline geometry. Complications in correlating GIA modeling results with observed geoid anomalies might arise from uncertainties in isostatic corrections (topography and non-uniform composition of crust and lithosphere) and from other non-GIA related contributions to the observered anomalies. The characteristic forms of the patterns might assist in separating the various contributions to the observed geoid anomalies. This can be illustrated for the Adriatic coast of Italy, where the best fit to the spatial sea-level curve pattern is provided by a combination of GIA and regional plate tectonics. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号