首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   2篇
航天   2篇
  2008年   1篇
  2007年   1篇
  2000年   1篇
  1967年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Jonathan Tate   《Space Policy》2000,16(4):261-265
The Earth has a long and violent history of collisions with extraterrestrial bodies such as asteroids and comet nuclei. Several of these impacts have been large enough to produce major environmental changes, causing mass extinctions and severe alterations to weather patterns and geography. There is no reason to suppose that the likelihood of such collisions will be any less in the future and the spread of human settlement, civilisation, and particularly urbanisation, makes it much more likely that a future impact, even relatively small, could result in the massive loss of human life and property. Despite the fact that the technology exists to predict and to some extent prevent such events, there is currently no co-ordinated international response to this threat. This article presents a realistic assessment of the threat to Earth from NEOs, describes the (underfunded) efforts so far made to counter it and makes a plea for further action to produce a fully functioning Spaceguard Foundation.  相似文献   
2.
Double Langmuir probes have been used to measure the ionization intensity in the wake of a hypervelocity projectile; subsidiary experiments to check the validity of the results are described. The spectral characteristic of the fluctuating part of the probe signal has been examined. Because of theoretical and experimental difficulties the results can at most be regarded as giving a qualitative picture of the turbulent structure of the wake. They do show, however, the predominant part played by eddies of roughly the wake diameter, agreeing on the average with the results of Clay et al. [1].  相似文献   
3.
The Student Dust Counter (SDC) experiment of the New Horizons Mission is an impact dust detector to map the spatial and size distribution of dust along the trajectory of the spacecraft across the solar system. The sensors are thin, permanently polarized polyvinylidene fluoride (PVDF) plastic films that generate an electrical signal when dust particles penetrate their surface. SDC is capable of detecting particles with masses m>10?12 g, and it has a total sensitive surface area of about 0.1 m2, pointing most of the time close to the ram direction of the spacecraft. SDC is part of the Education and Public Outreach (EPO) effort of this mission. The instrument was designed, built, tested, integrated, and now is operated by students.  相似文献   
4.
Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号