首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
航空   2篇
航天技术   8篇
航天   2篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2009年   1篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  1998年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Radiation exposures are typically characterized by two quantities. The first is the absorbed dose, or the energy deposited per unit mass for specific types of radiation passing through specified materials. The same amount of energy deposited in material by two different types of radiation, however, can result in two different levels of risk. Because of this, for the purpose of radiation protection operations, absorbed dose is modified by a second factor intended to normalize the risk associated with a given exposure. We present here an inter-comparison of methods for this modification. First is the radiation quality factor (Q), as defined by ICRP publication 60. This quantity is related functionally to the unrestricted linear energy transfer (LET) of a given radiation, and is multiplied by the absorbed dose to derive the dose equivalent (H). The second method for modifying absorbed dose is the radiation weighting factor, also given in ICRP-60, or as modified in NCRP report 115. To implement the weighting factor, the absorbed dose resulting from incidence of a particular radiation is multiplied by a factor assigned to that type of radiation, giving the equivalent dose. We compare calculations done based on identical fields of radiation representative of that encountered by the MIR space station, applying each of these two methods.  相似文献   
2.
Calculations of total dose and dose equivalent as a function of time since the start of the event are presented for four of the major solar particle events that occurred during the period from August to December 1989. Results are presented for exposures to the skin, ocular lens and bone marrow shielded by a nominal thickness of aluminum shielding, comparable to that provided by a spacesuit. The calculated curves of organ dose and dose equivalent versus time are parameterized using a Weibull functional form for the fitting equation. The fitting parameters are determined using least squares regression techniques. These results provide a useful starting point for the development of methods to predict the cumulative doses and times to reach various dose limits from a limited number of dose measurements early in a solar particle event.  相似文献   
3.
脉宽调制数字快速电磁阀作为重要的电液转换元件,在燃油控制系统的作用日益突出。针对断电常开型快速电磁阀的需求,开展断电常开型脉宽调制数字快速电磁阀的方案设计及仿真研究,并通过工程验证使该脉宽调制数字快速电磁阀的设计方案得到优化。  相似文献   
4.
5.
Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to critical body organs of spacecraft crews from energetic space radiation require accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through the spacecraft and overlying tissue. When estimating astronaut radiation organ doses and dose equivalents it is customary to use the Computerized Anatomical Man (CAM) model of human geometry to account for body self-shielding. Usually, the distribution for the 50th percentile man (175 cm height; 70 kg mass) is used. Most male members of the U.S. astronaut corps are taller and nearly all have heights that deviate from the 175 cm mean. In this work, estimates of critical organ doses and dose equivalents for interplanetary crews exposed to an event similar to the October 1989 solar particle event are presented for male body sizes that vary from the 5th to the 95th percentiles. Overall the results suggest that calculations of organ dose and dose equivalent may vary by as much as approximately 15% as body size is varied from the 5th to the 95th percentile in the population used to derive the CAM model data.  相似文献   
6.
Measurements taken in Low Earth Orbit (LEO) onboard the International Space Station (ISS) and transit vehicles have been extensively used to validate radiation transport models. Primarily, such comparisons were done by integrating measured data over mission or trajectory segments so that individual comparisons to model results could be made. This approach has yielded considerable information but is limited in its ability to rigorously quantify and differentiate specific model errors or uncertainties. Further, as exploration moves beyond LEO and measured data become sparse, the uncertainty estimates derived from these validation cases will no longer be applicable. Recent improvements in the underlying numerical methods used in HZETRN have resulted in significant decreases in code run time. Therefore, the large number of comparisons required to express error as a function of a physical quantity, like cutoff rigidity, are now possible. Validation can be looked at in detail over any portion of a flight trajectory (e.g. minute by minute) such that a statistically significant number of comparisons can be made. This more rigorous approach to code validation will allow the errors caused by uncertainties in the geometry models, environmental models, and nuclear physics models to be differentiated and quantified. It will also give much better guidance for future model development. More importantly, it will allow a quantitative means of extrapolating uncertainties in LEO to free space. In this work, measured data taken onboard the ISS during solar maximum are compared to results obtained with the particle transport code HZETRN. Comparisons are made at a large number (∼77,000) of discrete time intervals, allowing error estimates to be given as a function of cutoff rigidity. It is shown that HZETRN systematically underestimates exposure quantities at high cutoff rigidity. The errors are likely associated with increased angular variation in the geomagnetic field near the equator, the lack of pion production in HZETRN, and errors in high energy nuclear physics models, and will be the focus of future work.  相似文献   
7.
Previously, calculations of bone marrow dose from the large solar particle event (SPE) of July 2000 were carried out using the BRYNTRN space radiation transport code and the computerized anatomical man (CAM) model. Results indicated that the dose for a bone marrow site in the mid-thigh might be twice as large as the dose for a site in the pelvis. These large variations may be significant for space radiation protection purposes, which traditionally use an average of many (typically 33) sites throughout the body. Other organs that cover large portions of the body, such as the skin, may also exhibit similar variations with doses differing from site to site. The skin traditionally uses an average of 32 sites throughout the body. Variations also occur from site to site among the dose equivalents, which may be important in determining stochastic effects. In this work, the magnitudes of dose and dose equivalent variations from site to site are investigated. The BRYNTRN and HZETRN transport codes and the CAM model are used to estimate bone marrow and skin doses and dose equivalents as a function of position in the body for several large solar particle events and annual galactic cosmic ray spectra from throughout the space era. These position-specific results are compared with the average values usually used for radiation protection purposes. Various thicknesses of aluminum shielding, representative of nominal spacecraft, are used in the analyses.  相似文献   
8.
图书馆志愿者的招募、培训、考评是目前图书馆志愿者的主要管理内容。通过对现有高校图书馆志愿者管理的研究,分析其存在的不足,构建出一种新的基于双因素激励理论的图书馆志愿者管理机制,以期能更好地为用户服务。  相似文献   
9.
With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.  相似文献   
10.
Continued assembly of the International Space Station (ISS) requires numerous extra-vehicular activities (EVAs). Prudent radiological safety practices require minimizing additional exposures to crewmen during these periods. The spatial distribution of the “normal” trapped proton and electron radiation sources in low Earth orbit is strongly governed by the geomagnetic field. It is possible to use ISS trajectory information to estimate crew exposures during EVAs and to identify periods that can result in minimal EVA crew exposures through avoidance of these trapped radiation regions. Such exposure minimization planning can also accommodate the unforeseen development of a solar proton event. An EVA exposure estimation tool, EVADOSE, is described and applied to various EVA exposure scenarios. Procedures and parameters that influence EVA exposures are discussed along with techniques to minimize crew exposures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号