首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
航空   16篇
航天技术   14篇
综合类   1篇
航天   24篇
  2021年   1篇
  2018年   3篇
  2016年   1篇
  2014年   5篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   7篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
1.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
In this article we address several criticisms of Petschek-type reconnection models which have recently been raised by Heikkila. We discuss features of the time-dependent Petschek-type models in the context of the solar wind-magnetosphere interaction, and point out that such models can incorporate and reproduce observed features at the magnetopause, such as plasma jets and erosion of the current sheet. We argue that some of Heikkila's criticisms can be attributed to weaknesses in the analysis due to incomplete experimental information, rather than to flaws in the concept of reconnection per se; in this category we include the question of which instability leads to the localised breakup of the magnetopause current sheet. Other criticisms are based on an adherence to steady-state models, and cannot be sustained within the extended time-dependent theory. We discuss, for example, how the time-dependent model can provide a consistent picture of how energy from the incoming solar wind is transferred and converted as it enters the magnetosphere.  相似文献   
3.
Multibody systems with changing structure are considered. These systems have stages in their motion that distinct from each other by degree of freedom (DOF), joint connection structure and joint types. These mechanical systems are common in space application e.g. separation subsystems. Single coordinate set is used to formulate Newton–Euler equations of motion at each stage. Proposed equation form simplifies equations building process for certain stages and whole motion. Numerical experiment was carried out using proposed method.  相似文献   
4.
Previous studies have shown that extended length Earth-oriented tethers in the geosynchronous (GEO) region can be used to re-orbit satellites to disposal orbits. One such approach involves the extension of a GEO based tether, collection of a debris object, and retraction of the tether, which transfers the retracted configuration to a higher energy orbit for debris disposal. The re-extension of the tether after debris disposal returns the configuration to the near-GEO altitude. The practical feasibility of such a system depends on the ability to collect GEO debris objects, attach them to a deployed tether system, and retract the tethers for transfer to the disposal orbits.This study addresses the collection and delivery of debris objects to the deployed tether system in GEO. The investigation considers the number, type and the characteristics of the debris objects as well as the collection tug that can be ground controlled to detect, rendezvous and dock with the debris objects for their delivery to the tethers system.A total of more than 400 objects are in drift orbits crossing all longitudes either below or above the geostationary radius. More than 130 objects are also known to librate around the stable points in GEO with periods of libration up to five or more years. A characterization of the position and velocity of the debris objects relative to the collection tug is investigated. Typical rendezvous performance requirements for uncooperative GEO satellites are examined, and the similarities with other approaches such as the ESA's CX-OLEV commercial mission proposal to extend the life of geostationary telecommunication satellites are noted.  相似文献   
5.
Angular motion at atmospheric entry is studied in the paper for a spacecraft with a bi-harmonic moment characteristic. Special attention is given to the case when the spacecraft possesses two stable balanced positions, and, hence, it can oscillate in dense atmospheric layers in the ranges of small or large angles of attack. The averaged equations of spacecraft motion are derived, which allow one to increase the speed of calculations by several orders of magnitude. A real example is presented, which concerns a spacecraft specially designed for descending in the Martian atmosphere.  相似文献   
6.
Current projects of manned missions to Mars are aimed to their realization in the second-third decades of this century. The purpose of this paper is to determine and review the main biomedical problems, that require a first and foremost decision for safety support of extravehicular activity (EVA) carried out by crewmembers of the Mars expedition. To a number of such problems the authors of the paper attribute a creation of adequate EVA equipment intended, first, for assembly of interplanetary spacecraft on the Earth orbit, performance of maintenance operations and scientific researches on the external surface of spacecraft during interplanetary flight and, secondly, for work on the Mars surface. New generation of space suits with low weight, high mobility and acceptable risk of decompression sickness must be as a central component of EVA equipment. The program for preparation to a Mars expedition also has to include special investigations in order to design the means and methods for a reliable protection of crew against space radiation, to elaborate the approach to medical monitoring and primary medical care during autonomous space mission, to maintain good health condition of crewmembers during EVA under the Mars gravity (0.38 g) after super long-term flight in weightlessness.  相似文献   
7.
The current status of the theory of a new astrophysical phenomenon, aradiation-driven diskon, is outlined.The cyclotron radiation pressure around sufficiently hot, strongly magnetized white dwarfs and neutron stars is shown to be able to drive a wind from the photosphere and support a plasma envelope in the closed part of the magnetosphere. The magnetohydrostatic configuration of an optically thin, radiatively supported plasma envelope is determined. It consists of an equatorial disk in the region where the cyclotron radiation force exceeds the local force of gravity and a closed shell near the equilibrium surface where the radiation pressure equals gravity. The effects of finite optical depth on the behaviour of the magnetospheric plasma and the influence of the envelope on the observed radiation are discussed.Classes of magnetic degenerate stars are pointed out in which radiation-driven diskons may be found. The best candidates are two individual stars, the strongly magnetized white dwarfs GD 229 and PG 1031+234. Both exhibit broad and deep depressions in the ultraviolet which are explained as a result of cyclotron scattering by an optically thick radiation-driven envelope in the inhomogeneous magnetic field of the star. We predict a temporal and spectral variability of these features due to non-stationary plasma motions in the envelope.  相似文献   
8.
The motion of a spacecraft (SC) with double rotation and variable mass on the active leg of its descent is considered. The SC consists of two coaxial bodies. The coaxial scheme is used for gyroscopic stabilization of the SC longitudinal axis by the method of partial spin-up. The equations of spatial motion of coaxial bodies of varying composition are derived and approximate solutions for the angles of spatial orientation are found. The condition of decreasing amplitude of nutation oscillations is obtained, which allows the estimation of efficiency of the stabilization by partial spin-up. The errors in the magnitude and direction of the vector of braking thrust are also determined.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 3, 2005, pp. 224–232.Original Russian Text Copyright © 2005 by Aslanov, Doroshin, Kruglov.  相似文献   
9.
We have used the radio occultation (RO) satellite data CHAMP/GPS (Challenging Minisatellite Payload/Global Positioning System) for studying the ionosphere of the Earth. A method for deriving the parameters of ionospheric structures is based upon an analysis of the RO signal variations in the phase path and intensity. This method allows one to estimate the spatial displacement of a plasma layer with respect to the ray perigee, and to determine the layer inclination and height correction values. In this paper, we focus on the case study of inclined sporadic E (Es) layers in the high-latitude ionosphere based on available CHAMP RO data. Assuming that the internal gravity waves (IGWs) with the phase-fronts parallel to the ionization layer surfaces are responsible for the tilt angles of sporadic plasma layers, we have developed a new technique for determining the parameters of IGWs linked with the inclined Es structures. A small-scale internal wave may be modulating initially horizontal Es layer in height and causing a direction of the plasma density gradient to be rotated and aligned with that of the wave propagation vector k. The results of determination of the intrinsic wave frequency and period, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase speeds, and other characteristics of IGWs under study are presented and discussed.  相似文献   
10.
Active exploration of the space leads to growth of a near-Earth space pollution. The frequency of the registered collisions of space debris with functional satellites highly increased during last 10 years. As a rule a large space debris can be observed from the Earth and catalogued, then it is possible to avoid collision with the active spacecraft. However every large debris is a potential source of a numerous small debris particles. To reduce debris population in the near Earth space the large debris should be removed from working orbits. The active debris removal technique is considered that intend to use a tethered orbital transfer vehicle, or a space tug attached by a tether to the space debris. This paper focuses on the dynamics of the space debris with flexible appendages. Mathematical model of the system is derived using the Lagrange formalism. Several numerical examples are presented to illustrate the mutual influence of the oscillations of flexible appendages and the oscillations of a tether. It is shown that flexible appendages can have a significant influence on the attitude motion of the space debris and the safety of the transportation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号