首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
航天技术   1篇
航天   4篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The microbial composition of ancient permafrost sediments from the Kolyma lowland of Northeast Eurasia was examined through culture and culture-independent approaches. These sediments have been continuously frozen for 5,000 to 2-3 million years. A total of 265 Bacteria 16S rRNA gene sequences were amplified from the permafrost total-community genomic DNA and screened by amplified ribosomal 16S rRNA restriction analysis. Members of three major lineages were found: gamma-Proteobacteria (mostly Xanthomonadaceae), Actinobacteria, and Firmicutes. We also determined partial 16S rRNA gene sequences of 49 isolates from a collection of 462 aerobes isolated from these sediments. The bacteria included Actinomycetales (Arthrobacter and Microbacteriaceae); followed by the Firmicutes (Exiguobacterium and Planomicrobium); the Bacteroidetes (Flavobacterium); the gamma-Proteobacteria (Psychrobacter); and the alpha-Proteobacteria (Sphingomonas). Both culture and culture-independent approaches showed the presence of high and low G+C Gram-positive bacteria and gamma-Proteobacteria. Some of the 16S rRNA gene sequences of environmental clones matched those of Arthrobacter isolates. Two-thirds of the isolates grew at -2.5 degrees C, indicating that they are psychroactive, and all are closely related to phylogenetic groups with strains from other cold environments, mostly commonly from Antarctica. The culturable and non-culturable microorganisms found in the terrestrial permafrost provide a prototype for possible life on the cryogenic planets of the Solar System.  相似文献   
2.
This study describes brine lenses (cryopegs) found in Siberian permafrost derived from ancient marine sediment layers of the Arctic Ocean. The cryopegs were formed and isolated from sediment ~100,000-120,000 years ago. They remain liquid at the in situ temperature of -10 degrees C as a result of their high salt content (170-300 g/L). [(14)C] Glucose is taken up by the cryopeg biomass at -15 degrees C, indicating microbial metabolism at low temperatures in this habitat. Furthermore, aerobic, anaerobic heterotrophs, sulfate reducers, acetogens, and methanogens were detected by most probable number analysis. Two psychrophilic microbes were isolated from the cryopegs, a Clostridium and a Psychrobacter. The closest relatives of each were previously isolated from Antarctica. The cryopeg econiche might serve as a model for extraterrestrial life, and hence is of particular interest to astrobiology.  相似文献   
3.
本文利用1994年和1996年两次返回式卫星的搭载条件对舱内辐射剂量进行了对比测量.通过对比测量,研究不同掺杂、不同厚度LiF剂量计测量空间辐射剂量的特点;研究GM计数管计数和LiF剂量间的转换系数以及转换系数随屏蔽状况的变化;由剂量和GM计数研究粒子平均碰撞阻止本领的估计方法.结果表明,不同掺杂、不同厚度的LiF剂量计测量结果间无显著差异,而转换系数几乎不受舱内位置和屏蔽状态的影响.不同厚度LiF剂量计,不同屏蔽状态的GM计数管计数和剂量—计数转换系数的比较研究以及对粒子平均碰撞阻止本领的估计表明,舱内辐射剂量起决定作用的是高能粒子成分,其平均碰撞阻止本领估计约为5MeV/cm.  相似文献   
4.
Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute.  相似文献   
5.
Antarctic permafrost soils have not received as much geocryological and biological study as has been devoted to the ice sheet, though the permafrost is more stable and older and inhabited by more microbes. This makes these soils potentially more informative and a more significant microbial repository than ice sheets. Due to the stability of the subsurface physicochemical regime, Antarctic permafrost is not an extreme environment but a balanced natural one. Up to 10(4) viable cells/g, whose age presumably corresponds to the longevity of the permanently frozen state of the sediments, have been isolated from Antarctic permafrost. Along with the microbes, metabolic by-products are preserved. This presumed natural cryopreservation makes it possible to observe what may be the oldest microbial communities on Earth. Here, we describe the Antarctic permafrost habitat and biodiversity and provide a model for martian ecosystems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号