首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
航天技术   2篇
航天   15篇
  2011年   2篇
  2007年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1992年   3篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
排序方式: 共有17条查询结果,搜索用时 281 毫秒
1.
In August, 1981, the Westerbork Synthesis Radio Telescope was used for 4 h to search for narrowband pulsing radio beacons in the direction of the Galactic Center. By using both the spatial discrimination and temporal stability available to an interferometric measurement, weak intermittent signals can be detected even in the face of the strong, naturally caused radiation from this region. A radio beacon within our bandwidth, centered on the 21 cm neutral hydrogen line, would be recognizable if it had a repetition period between 40 sec and 1/2 h. The rms sensitivity to point sources was approximately 50 mJy/cycle, and the detection limit was 500 mJy/cycle. The limit degrades for pulse widths < 0.02s. No repetitive signals were found. For a swept, narrow-band radio beacon constrained to the Galactic Disk (beamwidth = 0.02 rad), our detection limit corresponds to a transmitter power of 10(11) MW at the Galactic Center.  相似文献   
2.
A series of Workshops on Exobiology in Earth Orbit held at NASA Ames Research Center has recently concluded. The draft of the final report from these Workshops contains a prioritized list of telescopic observations (possible only from above the Earth's atmosphere) that relate to the origin and evolution of the biogenic elements and compounds from their nucleosynthetic creation within stars to their inclusion in living systems. These orbital observations and the ground based laboratory and theoretical research necessary to support them have been termed Observational Exobiology. The details available on spacecraft, platforms and instrumentation most likely to be launched in the near future by the U.S. and Europe were considered in the Workshops. The purpose was to determine what observational programs would be tractible and what area of interest to exobiology required hardware and/or mission capabilities not yet envisioned. This paper summarizes the exciting opportunities that exist for Observational Exobiology.  相似文献   
3.
Tarter J 《Acta Astronautica》1997,41(4-10):613-622
Although there are no federally funded projects at this time, SETI (the search for extraterrestrial intelligence) is a vigorous exploratory science. There are currently eight observational programs on telescopes around the world, of which the Phoenix Project is the most comprehensive. Most of these projects are rooted in the conclusions of the pioneering studies of the early 1970's that are summarized in the Cyclops Report. Technology has experienced an exponential growth over the past two and a half decades. It is reasonable to reassess the Cyclops conclusions as SETI enters the next century. Listening for radio signals is still the preferred method of searching, however new technologies are making searches at other wavelengths possible and are modifying the ways in which the radio searches can and should be conducted. It may be economically feasible to undertake the construction of very large telescopes that can simultaneously provide multiple beams on the sky for use by SETI and the radioastronomy community.  相似文献   
4.
This paper maintains that international security considerations are likely to present major problems to the community of scientists who first confirm the existence of an extraterrestrial technology. The discussion focuses on those activities that will affect the SETI community should a detection be made. It is probable that security agencies will require official debriefings, signal monitoring, some forms of information management, and a voice in science policy with regard to reply. The SETI community has, in the past, underestimated the constraints that are likely to be placed upon them in the post-detection environment. Such constraints present major problems for the scientific community. Response to these constraints should be discussed prior to detection.  相似文献   
5.
This paper estimates the maximum range at which radar signals from the Earth could be detected by a search system similar to the NASA Search for Extraterrestrial Intelligence Microwave Observing Project (SETI MOP) assumed to be operating out in the galaxy. Figures are calculated for the Targeted Search, and for the Sky Survey parts of the MOP, both operating, as currently planned, in the second half of the decade of the 1990s. Only the most powerful terrestrial transmitters are considered, namely, the planetary radar at Arecibo in Puerto Rico, and the ballistic missile early warning systems (BMEWS). In each case the probabilities of detection over the life of the MOP are also calculated. The calculation assumes that we are only in the eavesdropping mode. Transmissions intended to be detected by SETI systems are likely to be much stronger and would of course be found with higher probability to a greater range. Also, it is assumed that the transmitting civilization is at the same level of technological evolution as ours on Earth. This is very improbable. If we were to detect another technological civilization, it would, on statistical grounds, be much older than we are and might well have much more powerful transmitters. Both factors would make detection by the NASA MOP a much more likely outcome.  相似文献   
6.
The authors use the opportunity of presenting a paper during the 51st International Astronautical Congress in Rio de Janeiro to introduce a numerical method of characterizing the potential significance of any announcement of discovery of extraterrestrial intelligence. This approach uses the Torino Scale (for characterizing asteroid impacts) as a model for constructing a proposed “Rio Scale” to assist the discussion and interpretation of any claimed discovery of ETI.  相似文献   
7.
During 1980 and 1981, the 305-m radio telescope at the Arecibo Observatory in Puerto Rico was used to conduct a high resolution search for narrowband signals from the direction of 210 nearby solar type stars and 5 OH masers. For each star at least 4 MHz of bandwidth surrounding the 21-cm HI line and/or the 18-cm OH lines was studied with a spectral resolution of 5.5 Hz in both right and left circular polarization. The formal limit of sensitivity achieved during the course of this search varied depending upon the particular receivers available. In all cases the search could have detected a narrowband transmitter of power comparable to the Arecibo planetary radar, had any such been transmitting on the frequencies searched during the time of observation out to the distance of the farthest target star. As in previous searches, the number of "false alarms" encountered was far greater than predicted on the basis of Gaussian noise statistics. A small number of stars have exhibited signals which cannot immediately be explained in terms of astrophysical or man-made sources and deserve reobservation. This is typical of the results of previous non-real-time searches and does not yet constitute the detection of an ETI.  相似文献   
8.
This article presents a typology of extraterrestrial signals which demonstrates the possibilities of very complex social and psychological reactions to the receipts of a message from outer space, and also helps to address the problem of signal detection. The author argues that there is a clear need to establish a Contact Verification and Interpretation Committee. A great deal of planning and forethought is necessary if we are to assure the smoothest possible social assimilation of the news that another intelligence has been detected.  相似文献   
9.
An approach is proposed to developing a message from Humankind to extraterrestrial intelligence if we detect it.  相似文献   
10.
The Search for ExtraTerrestrial Intelligence (SETI) finally has its own full-time telescope. The Allen telescope array (ATA) in Northern California was dedicated on October 11, 2007. This array, which will eventually be composed of 350 small radio antennas, each 6.1 m in diameter, is being built as a partnership between the SETI Institute and the University of California Radio Astronomy Laboratory. Last October, Paul G. Allen (who provided the funds for the technology development and the first phase of array construction) pushed a silver button and all 42 antennas of the current ATA-42 slewed to point in the direction of the distant galaxy M81. Specialized electronic backend detectors attached to the ATA began making a radio map of that galaxy and simultaneously began SETI observations of HIP48573, a G5V star near M81 on the sky and a distance of 264 light years from Earth. The Allen telescope array will greatly improve the speed of conducting SETI searches over the next few decades, and it will allow a suite of different search strategies to be undertaken. This paper summarizes some of the earliest SETI observations from the array, and describes the search strategies currently being planned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号