首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   2篇
航天技术   4篇
航天   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 42 毫秒
1
1.
2.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is configured with a solenoidal superconducting magnet and a suite of precision particle detectors, including time-of-flight hodoscopes based on plastic scintillators, a silica-aerogel Cherenkov detector, and a high resolution tracking system with a central jet-type drift chamber. The charges of incident particles are determined from energy losses in the scintillators. Their magnetic rigidities (momentum/charge) are measured by reconstructing each particle trajectory in the magnetic field, and their velocities are obtained by using the time-of-flight system. Together, these measurements can accurately identify helium isotopes among the incoming cosmic-ray helium nuclei up to energies in the GeV per nucleon region. The BESS-Polar I instrument flew for 8.5 days over Antarctica from December 13th to December 21st, 2004. Its long-duration flight and large geometric acceptance allow the time variations of isotopic fluxes to be studied for the first time. The time variations of helium isotope fluxes are presented here for rigidities from 1.2 to 2.5 GV and results are compared to previously reported proton data and neutron monitor data.  相似文献   
3.
To establish a large deployable antenna, monitoring and collimation are essential for reliable and precise deployment. We have developed an analysis method to detect shifts in several images, in which the combination of cross-correlations between images and approximations at subpixel precision enables us to detect shifts in images with a precision of up to 0.01 pixels. The LDREX mission; which was a preliminary experiment for a large deployable antenna, ETS-VIII, was performed in December 2000. During this experiment, anomalies occurred in the antenna, and deployment was aborted. To understand the cause of the anomalies, we used our visual analysis method. Using this analysis, we detected vibrating features in the antenna, which were useful for explaining the anomalies. We outline our visual analysis method and discuss its application in monitoring the deployable antenna.  相似文献   
4.
5.
This paper proposes a new aerodynamic device, which was designated multi-row-disk (MRD). This device has a cone and stabilizer disks being arranged in the axial direction. This device can arbitrarily change its aerodynamic characteristics by translating stabilizer disks. In the first part of this paper, the effect of several nose shape configurations including the MRD device on the aerodynamic characteristics is reported. By increasing the number of stabilizer disks, zero-lift drag and induced drag can be reduced. It was also found that putting cavities on the conical surface is effective for improving longitudinal static stability. In the second part, the effect of cavity flow instability on pressure and strain oscillation is reported. We drew the design criterion that the configuration of stabilizer disks should be determined not to couple the 1st mode with pressure oscillation frequency, which can be predicted with Rossiter's formula.  相似文献   
6.
In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO2 to O2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO2 gas mixed with N2 gas before closing the vessel. The CO2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol-1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1, which was controlled with a metal halide lamp. Temperature was kept at 28 degrees C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO2 levels of 1.0 and 3.0 mmol mol-1, respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 75 nmol O2 gDW-1 s-1, at 2-3 mmol mol-1 CO2 and gradually decreased with increasing CO2 levels from 3.0 to 10 mmol mol-1. The results demonstrate that C. demersum could be an efficient CO2 to O2 converter under a 2.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.  相似文献   
7.
The Multiband Imager (MI) is a high-resolution, multi-spectral imaging instrument for lunar exploration. It consists of two cameras, VIS and NIR, and is carried on the SELenological and ENgineering Explorer (SELENE), launched on Sep. 14, 2007. During the observation from January 2008 to June 2009, MI acquired about 450,000 scenes of multispectral image. The radiometric properties of the cameras were characterized using the pre-flight data derived in laboratory experiments with a calibrated integrating sphere. Twelve light source sets were used to examine the S/N ratio, linearity, and saturation level of the cameras. The dark field signal is quite stable in both cameras, having a noise level of less than 1 DN (VIS) and 2 DN (NIR). The fluctuation in the light field is also low (<2 DN), indicating that the spatial nonuniformity in the camera responses can be removed using a flat field. In order to remove the smear signals due to the frame transfer in the VIS data, we developed an iterate algorithm using all bands in the VIS camera. The S/N ratio, which is critical to the precision of the product, is estimated to exceed 160 for the VIS bands and 400 for the NIR bands under low illumination conditions (5% of lunar surface reflectance). Based on the S/N ratio, the radiometric error due to the noise is calculated to be less than 0.7% for VIS and 0.2% for NIR. The relationship between input and output of the VIS camera is linear with a residual of less than 0.6 DN, corresponding to a radiometric error of 0.3%. The NIR exhibits a non-linear response to the input radiance. A cubic function best fits the pre-flight data with an average residual of 8 DN (corresponds to an error of 0.8%). Validation using in-flight data indicated that the instability of the dark output has not changed, but the level of dark output has slightly changed in the NIR bands (less than 6 DN). The pixel-to-pixel sensitivity variation in the orbit has been changed from that in the pre-flight experiment. The difference between the in-flight data and the pre-flight data ranges within ±2%. There is also a small (less than ±1%) but nonnegligible difference between in-flight data of different cycles in both the VIS and NIR bands, suggesting that the coefficient for spatial ununiformity correction needs to be calculated for each cycle.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号