首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
航空   1篇
航天技术   9篇
航天   12篇
  2021年   2篇
  2014年   3篇
  2011年   3篇
  2009年   1篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1965年   1篇
排序方式: 共有22条查询结果,搜索用时 16 毫秒
1.
Complex honeycomb space structures (i.e. antennas, solar panels, etc.) must be inspected and accurately tested before flight.The thermography can be employed with success for the detection of the position of defects (delaminations, noneffective bondings, cracks, etc.) and for the evaluation of their size and geometry in all the cases in which the defect acts as a thermal resistance due to the low conductivity of the air filling the defect volume.The basic idea is to create in the specimen a heat flow distribution that is altered by the presence of the defect.The surface temperature distribution is then measured by means of a thermograph and is correlated with the presence of the defect.A numerical analysis and preliminary experiments have been carried out which show the feasibility of the method as applied to honeycomb structures.  相似文献   
2.
Material Science and Life Science experiments in microgravity both have urgent needs of evaluating the temperature distribution within and on the surface of liquid zones. Non intrusive methods are available which measure the IR radiations emitted by the surface. The thermograph systems have a number of advantages since they supply a thermal picture of the surface with sufficient time, space and temperature accuracy. A computerized system has been designed for data acquisition and elaboration and used for ground experiments; the system can also be used for space experiments with some modifications. Non intrusive measurements of bulk temperature in two dimensional liquid flow fields can be made by means of optical methods which detect variations of the index of refraction. A method is proposed which is able to take with the same optical apparatus shadowgraph. Schlieren and differential interferometers pictures. A computerized system is proposed for data acquisition and elaboration.  相似文献   
3.
Close proximity operations around small bodies are extremely challenging due to their uncertain dynamical environment. Autonomous guidance and navigation around small bodies require fast and accurate modeling of the gravitational field for potential on-board computation. In this paper, we investigate a model-based, data-driven approach to compute and predict the gravitational acceleration around irregular small bodies. More specifically, we employ Extreme Learning Machine (ELM) theories to design, train and validate Single-Layer Feedforward Networks (SLFN) capable of learning the relationship between the spacecraft position and the gravitational acceleration. ELM-base neural networks are trained without iterative tuning therefore dramatically reducing the training time. Analysis of performance in constant density models for asteroid 25143 Itokawa and comet 67/P Churyumov-Gerasimenko show that ELM-based SLFN are able learn the desired functional relationship both globally and in selected localized areas near the surface. The latter results in a robust neural algorithm for on-board, real-time calculation of the gravity field needed for guidance and control in close-proximity operations near the asteroid surface.  相似文献   
4.
One of the most important problems for performing a good design of the spacecraft attitude control law is connected to its robustness when some uncertainty parameters are present on the inertial and/or on the elastic characteristics of a satellite. These uncertainties are generally intrinsic on the modeling of complex structures and in the case of large flexible structures they can be also attributed to secondary effects associated to the elasticity. One of the most interesting issues in modeling large flexible space structures is associated to the evaluation of the inertia tensor which in general depends not only on the geometric ‘fixed’ characteristic of the satellite but also on its elastic displacements which of course in turn modify the ‘shape’ of the satellite. Usually these terms can be considered of a second order of magnitude if compared with the ones associated to the rigid part of a structure. However the increasing demand on the dimension of satellites due to the presence for instance of very large solar arrays (necessary to generate power) and/or large antennas has the necessity to investigate their effects on their global dynamic behavior in more details as a consequence. In the present paper a methodology based on classical Lagrangian approach coupled with a standard Finite Element tool has been used to derive the full dynamic equations of an orbiting flexible satellite under the actions of gravity, gravity gradient forces and attitude control. A particular attention has been paid to the study of the effects of flexibility on the inertial terms of the spacecraft which, as well known, influence its attitude dynamic behavior. Furthermore the effects of the attitude control authority and its robustness to the uncertainties on inertial and elastic parameters has been investigated and discussed.  相似文献   
5.
Preface     
  相似文献   
6.
A number of missions are in progress for Earth resources satellites to perform soil diagnosis by observing the bare soil thermal response to the heat input from the surrounding atmosphere. Heat capacity missions (and similar missions) are accomplished by measuring the soil temperature at the times of the satellite passes over the soil site.The models which are usually adopted assume that, for atmospheric conditions periodically changing during the day, the surface temperature time dependence is a function of the soil thermal inertia alone (for a dry soil).The present author has shown elsewhere that a more appropriate, two dimensional finite element modelling of the thermal behaviour of the soil, exhibits a dependence of the surface temperature time evolution on both the thermal conductivity (k) and on the volume heat capacity (?c) (for no evaporation at the interface). At least two independent temperature measurements are necessary in order to get information about k and ?c. It is shown that, within the range of values of k and ?c of the usual soils, temperature measurements taken at two successive satellite passes may yield the necessary information on the soil thermophysical properties. Charts can be constructed which will provide information on k and ?c when two soil temperatures are measured at proper times.  相似文献   
7.
In the frame of space missions, mechanisms often constitute critical systems whose functionality and performance need to be tested on ground before the mission launch. The LISA scientific space mission will detect gravitational waves by measuring the relative displacement of pairs of free-floating test masses set into geodesic motion onboard of three spacecrafts. Inside each satellite, the injection of the test masses from the caged configuration into the geodesic trajectory will be performed by the grabbing positioning and release mechanism. To provide a successful injection, the test masses must be dynamically released with a minimal residual velocity against adhesion with the holding device. A parameter that determines the test mass residual velocity is the quickness of the retraction of the holding device. The need arises then to characterize the dynamic response of the release mechanism in order to predict its behaviour in the in-flight conditions. Once a validated model of the mechanism is available, the compliance of the system to the tight requirement on the maximum allowed residual velocity of the test mass may be verified. Starting from an electro-mechanical model of the mechanism dynamics, this paper presents the results of the experimental identification of its relevant parameters.  相似文献   
8.
9.
To investigate the precursory signature of earthquakes on low frequency (LF) signal propagation, six earthquakes, having magnitude greater than equal to 6.5 and depth less than equal to 30 km, are being studied. The base line level of 40 kHz signal, transmitted from JJY station, Japan, is analysed with respect to Vd statistical parameter. Results show that the Vd parameter values starts fluctuating from its ambient levels before and during the days of the earthquakes, with significant variation starting 1–3 days prior to the earthquake concerned. This present study is an approach for identifying the precursory signatures of earthquakes on LF signal propagation using a new methodology with Vd parameter.  相似文献   
10.
The different acceleration components on the ISS that are responsible for the generation of convective motions in a fluid cell either in the presence of density gradients or in quasi-isodense processes, are analyzed. The NASA measurements of the quasi-steady and periodic acceleration on the ISS are considered and their effects on fluid-dynamic experiments are computed and discussed under different assumptions. In particular, numerical simulations are carried out to identify the relative importance of linear and pendular accelerations, due to possible rotations of the P/L around its center of mass. The effects caused by variable accelerations created by an isolation mount that exhibits an attenuation factor not constant within the payload volume, caused by the reaction forces of the umbilicals, are computed and analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号