首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航天   7篇
  2014年   1篇
  2011年   3篇
  2008年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 21 毫秒
1
1.
Pellis NR  North RM 《Acta Astronautica》2004,55(3-9):589-598
The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations.  相似文献   
2.
There is renewed interest in using nuclear power in a variety of ways in space, as well as in disposing of terrestrial nuclear waste aloft. While the benefits of such use to space exploration might be high, the potential costs to Earth and its inhabitants are currently too dear. Accidents have already occurred which, despite official denials, have spread radiation worldwide. Such denials are characteristic of the closed and secretive nature of the nuclear ‘debate’. This viewpoint calls for the involvement of all those concerned with space nuclear power—lay, professional, government and NGO—in decisions on whether to proceed with it and suggests that maybe we should wait for safer scientific discoveries before we attempt further planetary exploration.  相似文献   
3.
With the development of several key technologies, nanosatellites are emerging as important vehicles for carrying out technology demonstrations and space science research. Nanosatellites are attractive for several reasons, the most important being that they do not involve the prohibitive costs of a conventional satellite launch. One key enabling technology is in the area of battery technology. In this paper, we focus on the characterization of battery technologies suitable for nanosatellites.Several battery chemistries are examined in order to find a type suitable for typical nanosatellite missions. As a baseline mission, we examine York University's 1U CubeSat mission for its power budget and power requirements. Several types of commercially available batteries are examined for their applicability to CubeSat missions. We also describe the procedures and results from a series of environmental tests for a set of Lithium Polymer batteries from two manufacturers.  相似文献   
4.
It has been demonstrated that plants can be grown in microgravity, and almost every space programme has included experimental greenhouses to investigate technical and biological feasibility, as well as the habitability-related benefits of plant growth activities in space.Aside from nutritional and life support system applications, these benefits include sensory and spatial enhancement of the spacecraft environment, both through the plants as such and the design of their growth chambers, as well as by providing meaningful occupation through individual interaction. In view of long duration missions, plant growth facilities should not be regarded as a desirable add-on, but as an essential component of the habitat.Following a review of existing greenhouse designs and plants grown on past missions, the paper summarizes the benefits of greenhouses and outlines potential forms of architectural integration within the spacecraft interior.  相似文献   
5.
6.
The well-known Lagrangian points that appear in the planar restricted three-body problem are very important for astronautical applications. They are five points of equilibrium in the equations of motion, what means that a particle located at one of those points with zero velocity will remain there indefinitely. The collinear points (L1, L2 and L3) are always unstable and the triangular points (L4 and L5) are stable in the present case studied (Earth–Sun system). They are all very good points to locate a space-station, since they require a small amount of ΔV (and fuel), the control to be used, for station-keeping. The triangular points are especially good for this purpose, since they are stable equilibrium points.In this paper, the planar restricted four-body problem applied to the Sun–Earth–Moon–Spacecraft is combined with numerical integration and gradient methods to solve the two-point boundary value problem. This combination is applied to the search of families of transfer orbits between the Lagrangian points and the Earth, in the Earth–Sun system, with the minimum possible cost of the control used. So, the final goal of this paper is to find the magnitude of the two impulses to be applied in the spacecraft to complete the transfer: the first one when leaving/arriving at the Lagrangian point and the second one when arriving/living at the Earth.The dynamics given by the restricted four-body problem is used to obtain the trajectory of the spacecraft, but not the position of the equilibrium points. Their position is taken from the restricted three-body model. The goal to use this model is to evaluate the perturbation of the Sun in those important trajectories, in terms of fuel consumption and time of flight. The solutions will also show how to apply the impulses to accomplish the transfers under this force model.The results showed a large collection of transfers, and that there are initial conditions (position of the Sun with respect to the other bodies) where the force of the Sun can be used to reduce the cost of the transfers.  相似文献   
7.
In contemporary orbital missions, workloads are so high and varied that crew may rarely experience stretches of monotony. However, in historical long duration missions, occurrences of monotony were, indeed, reported anecdotally by crew. Of the effective countermeasures that appear to be at hand, many rely on visual or logistical proximity to the Earth, and are not feasible in the remote context of an extended deep space mission scenario. There, particularly in- and outbound cruising stages would be characterised by longer, comparably uneventful periods of low workload, coupled with confinement and unchanging vehicle surroundings.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号