首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
航空   7篇
航天技术   2篇
航天   4篇
  2014年   1篇
  2013年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有13条查询结果,搜索用时 328 毫秒
1.
Application of the degeneration sensitive, cupric-silver staining method to brain sections of male Sprague-Dawley rats irradiated 4 days before sacrifice with 155 Mev protons, 2-8 Gy at 1 Gy/min (N=6) or 22-l0lGy at 20 Gy/min (N=16) or with 18.6 Mev electrons, 32-67 Gy at 20 Gy/min (N=20), doses which elicit behavioral changes (accelerod or conditioned taste aversion), resulted in a display of degeneration of astrocyte-like cell profiles which were not uniformly distributed. Plots of 'degeneration scores' (counts of profiles in 29 areas) vs. dose for the proton and electron irradiations displayed a linear dose response for protons in the range of 2-8 Gy. In the 20-100 Gy range, for both electrons and protons the points were distributed in a broad band suggesting a saturation curve. The dose range in which these astrocyte-like profiles becomes maximal corresponds well with the dose range for the X-ray eradication of a subtype of astrocytes, 'beta astrocytes'.  相似文献   
2.
Morphogenetically competent proembryonic cells and well-developed somatic embryos of carrot at two levels of organization were exposed for 18.5 days to a hypogravity environment aboard the Soviet Biosatellite Cosmos 1129. It was confirmed that cultured totipotent cells of carrot can give rise to embryos with well-developed roots and minimally developed shoots. It was also shown that the space hypogravity environment could support the further growth of already-organized, later somatic embryonic stages and give rise to fully developed embryo-plantlets with roots and shoots.  相似文献   
3.
The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.  相似文献   
4.
The theory of embedded time series is shown applicable for determining a reasonable lower bound on the length of test sequence required for accurate classification of moving objects. Sequentially recorded feature vectors of a moving object form a training trajectory in feature space. Each of the sequences of feature vector components is a time series, and under certain conditions, each of these time series has approximately the same fractal dimension. The embedding theorem may be applied to this fractal dimension to establish a sufficient number of observations to determine the feature space trajectory of the object. It is argued that this number is a reasonable lower bound on test sequence length for use in object classification. Experiments with data corresponding to five military vehicles (observed following a projected Lorenz trajectory on a viewing sphere) show that this bound is indeed adequate  相似文献   
5.
The autonomous power system (APS) project at the NASA Lewis Research Center is described. The project is designed to demonstrate the applications of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution systems. It consists of the autonomous power expert system (APEX) for fault detection, isolation, and recovery; the autonomous intelligent power scheduler, for efficient assignment of activity start times and resources; and power hardware (Brassboard) to emulate a space-based power system. Each part of the system was critiqued based on individual performance as well as the ability to interact with the other portions of the APS project. These critiques were used to determine guidelines for new and improved components  相似文献   
6.
The development of a fiber based laser architecture will enable novel applications in environments which have hitherto been impossible due to size, efficiency and power of traditional systems. Such a new architecture has been developed by the International Coherent Amplification Network (ICAN) project. Here we present an analysis of utilizing an ICAN laser for the purpose of tracking and de-orbiting hyper-velocity space debris. With an increasing number of new debris from collisions of active, derelict and new payloads in orbit, there is a growing danger of runaway debris impacts. Due to its compactness and efficiency, it is shown that space-based operation would be possible. For different design parameters such as fiber array size, it is shown that the kHz repetition rate and kW average power of ICAN would be sufficient to de-orbit small 1–10 cm debris within a single instance via laser ablation.  相似文献   
7.
The Electron Drift Instrument (EDI) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by use of different electron energies, be determined separately. As a by-product, the magnetic field strength is also measured. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument.  相似文献   
8.
The low-energy neutral atom imager for IMAGE   总被引:1,自引:0,他引:1  
Moore  T.E.  Chornay  D.J.  Collier  M.R.  Herrero  F.A.  Johnson  J.  Johnson  M.A.  Keller  J.W.  Laudadio  J.F.  Lobell  J.F.  Ogilvie  K.W.  Rozmarynowski  P.  Fuselier  S.A.  Ghielmetti  A.G.  Hertzberg  E.  Hamilton  D.C.  Lundgren  R.  Wilson  P.  Walpole  P.  Stephen  T.M.  Peko  B.L.  Van Zyl  B.  Wurz  P.  Quinn  J.M.  Wilson  G.R. 《Space Science Reviews》2000,91(1-2):155-195
The `Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) will be launched early in the year 2000. It will be the first mission dedicated to imaging, with the capability to determine how the magnetosphere changes globally in response to solar storm effects in the solar wind, on time scales as short as a few minutes. The low energy neutral atom (LENA) imager uses a new atom-to-negative ion surface conversion technology to image the neutral atom flux and measure its composition (H and O) and energy distribution (10 to 750 eV). LENA uses electrostatic optics techniques for energy (per charge) discrimination and carbon foil time-of-flight techniques for mass discrimination. It has a 90°×° field-of-view in 12 pixels, each nominally 8°×°. Spacecraft spin provides a total field-of-view of 90°×360°, comprised of 12×45 pixels. LENA is designed to image fast neutral atom fluxes in its energy range, emitted by auroral ionospheres or the sun, or penetrating from the interstellar medium. It will thereby determine how superthermal plasma heating is distributed in space, how and why it varies on short time scales, and how this heating is driven by solar activity as reflected in solar wind conditions.  相似文献   
9.
One of the fundamental challenges facing the scientific community as we enter this new century of Mars research is to understand, in a rigorous manner, the biotic potential both past and present of this outermost terrestrial-like planet in our solar system. Urey: Mars Organic and Oxidant Detector has been selected for the Pasteur payload of the European Space Agency’s (ESA’s) ExoMars rover mission and is considered a fundamental instrument to achieve the mission’s scientific objectives. The instrument is named Urey in recognition of Harold Clayton Urey’s seminal contributions to cosmochemistry, geochemistry, and the study of the origin of life. The overall goal of Urey is to search for organic compounds directly in the regolith of Mars and to assess their origin. Urey will perform a groundbreaking investigation of the Martian environment that will involve searching for organic compounds indicative of life and prebiotic chemistry at a sensitivity many orders of magnitude greater than Viking or other in situ organic detection systems. Urey will perform the first in situ search for key classes of organic molecules using state-of-the-art analytical methods that provide part-per-trillion sensitivity. It will ascertain whether any of these molecules are abiotic or biotic in origin and will evaluate the survival potential of organic compounds in the environment using state-of-the-art chemoresistor oxidant sensors.  相似文献   
10.
The radiation belts and plasma in the Earth’s magnetosphere pose hazards to satellite systems which restrict design and orbit options with a resultant impact on mission performance and cost. For decades the standard space environment specification used for spacecraft design has been provided by the NASA AE8 and AP8 trapped radiation belt models. There are well-known limitations on their performance, however, and the need for a new trapped radiation and plasma model has been recognized by the engineering community for some time. To address this challenge a new set of models, denoted AE9/AP9/SPM, for energetic electrons, energetic protons and space plasma has been developed. The new models offer significant improvements including more detailed spatial resolution and the quantification of uncertainty due to both space weather and instrument errors. Fundamental to the model design, construction and operation are a number of new data sets and a novel statistical approach which captures first order temporal and spatial correlations allowing for the Monte-Carlo estimation of flux thresholds for user-specified percentile levels (e.g., 50th and 95th) over the course of the mission. An overview of the model architecture, data reduction methods, statistics algorithms, user application and initial validation is presented in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号