首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
航天技术   14篇
航天   5篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   3篇
  1992年   2篇
  1991年   1篇
  1989年   4篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
Potential Martian soil components relevant to exobiology include water, organic matter, evaporites, clays, and oxides. These materials are also resources for human expeditions to Mars. When found in particular combinations, some of these materials constitute diagnostic paleobiomarker suites, allowing insight to be gained into the probability of life originating on Mars. Critically important to exobiology is the method of data analysis and data interpretation. To that end we are investigating methods of analysis of potential biomarker and paleobiomarker compounds and resource materials in soils and rocks pertinent to Martian geology. Differential thermal analysis coupled with gas chromatography is shown to be a highly useful analytical technique for detecting this wide and complex variety of materials.  相似文献   
2.
Early Earth and early Mars were similar enough such that past geochemical and climatic conditions on Mars may have also been favorable for the origin of life. However, one of the most striking differences between the two planets was the low partial pressure of dinitrogen (pN2) on early Mars (18 mb). On Earth, nitrogen is a key biological element and in many ecosystems the low availability of fixed nitrogen compounds is the main factor limiting growth. Biological fixation of dinitrogen on Earth is a crucial source of fixed nitrogen. Could the low availability of dinitrogen in the primordial Martian atmosphere have prevented the existence, or evolution of Martian microbiota? Azotobacter vinelandii and Azomonas agilis were grown in nitrogen free synthetic medium under various partial pressures of dinitrogen ranging from 780-0 mb (total atmosphere=1 bar). Below 400 mb the biomass, cell number, and growth rate decreased with decreasing pN2. Both microorganisms were capable of growth at a pN2 as low as 5 mb, but no growth was observed at a pN2 < or = 1 mb. The data appear to indicate that biological nitrogen fixation could have occurred on primordial Mars (pN2=18 mb) making it possible for a biotic system to have played a role in the Martian nitrogen cycle. It is possible that nitrogen may have played a key role in the early evolution of life on Mars, and that later a lack of available nitrogen on that planet (currently, pN2=0.2 mb) may have been involved in its subsequent extinction.  相似文献   
3.
An important question for exobiology is, did life evolve on Mars? To answer this question, experiments must be conducted on the martian surface. Given current mission constraints on mass, power, and volume, these experiments can only be performed using proposed analytical techniques such as: electron microscopy, X-ray fluorescence, X-ray diffraction, alpha-proton backscatter, gamma-ray spectrometry, differential thermal analysis, differential scanning calorimetry, pyrolysis gas chromatography, mass spectrometry, and specific element detectors. Using prepared test samples consisting of 1% organic matter (bovine serum albumin) in palagonite and a mixture of palagonite, clays, iron oxides, and evaporites, it was determined that a combination of X-ray diffraction and differential thermal analysis coupled with gas chromatography provides the best insight into the chemistry, mineralogy, and geological history of the samples.  相似文献   
4.
One design for a manned Mars base incorporates a bioregenerative life support system based upon growing higher plants at a low atmospheric pressure in a greenhouse on the Martian surface. To determine the concept's feasibility, the germination and initial growth of wheat (Triticum aestivum) was evaluated at low atmospheric pressures in simulated Martian atmosphere (SMA) and in SMA supplemented with oxygen. Total atmospheric pressures ranged from 10 to 1013 mb. No seeds germinated in pure SMA, regardless of atmospheric pressure. In SMA plus oxygen at 60 mb total pressure, germination and growth occurred but were lower than in the Earth atmosphere controls.  相似文献   
5.
The comparability of the early environments of Mars and Earth, and the biological evolution which occurred on early earth, motivates serious consideration of the possibility of an early martian biota. Environments which could have contained this early martian life and which may presently contain evidence of this former life include aquatic, ice, soil, and rock habitats. Several analogs of these potential early martian environments, which can provide useful information in searching for extinct life on Mars, are currently available for study on Earth. These terrestrial analogs include the perennially ice-covered lakes and sandstone rocks in the Polar Deserts of Antarctica, surface of snowfields and glaciers, desert soils, geothermal springs, and deep subsurface environments.  相似文献   
6.
Geologic and climatologic studies suggest that conditions on early Mars were similar to early Earth. Because life on Earth is believed to have originated during this early period (3.5 billion years ago), the Martian environment could have also been conducive to the origin of life. To investigate this possibility we must first define the attributes of an early Martian biota. Then, specific geographic locations on Mars must be chosen where life may have occurred (i.e. areas which had long standing water), and within these distinct locations search for key signatures or bio-markers of a possible extinct Martian biota. Some of the key signatures or bio-markers indicative of past biological activity on Earth may be applicable to Mars including: reduced carbon and nitrogen compounds, CO3(2-), SO4(2-), NO3-, NO2- [correction of NO2(2)], Mg, Mn, Fe, and certain other metals, and the isotopic ratios of C, N and S. However, we must also be able to distinguish abiotic from biologic origins for these bio-markers. For example, abiotically fixed N2 would form deposits of NO3- and NO2-, whereas biological processes would have reduced these to ammonium containing compounds, N2O, or N2, which would then be released to the atmosphere. A fully equipped Mars Rover might be able to perform analyses to measure most of these biomarkers while on the Martian surface.  相似文献   
7.
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken.  相似文献   
8.
The primary physical factors important to life's evolution on a planet include its temperature, pressure and radiation regimes. Temperature and pressure regulate the presence and duration of liquid water on the surface of Mars. The prolonged presence of liquid water is essential for the evolution and sustained presence of life on a planet. It has been postulated that Mars has always been a cold dry planet; it has also been postulated that early mars possessed a dense atmosphere of CO2 (> or = 1 bar) and sufficient water to cut large channels across its surface. The degree to which either of these postulates is true correlates with the suitability of Mars for life's evolution. Although radiation can destroy living systems, the high fluxes of UV radiation on the martian surface do not necessarily stop the origin and early evolution of life. The probability for life to have arisen and evolved to a significant degree on Mars, based on the postulated ranges of early martian physical factors, is almost solely related to the probability of liquid water existing on the planet for at least hundreds of millions to billions of years.  相似文献   
9.
We report the first telemetered spaceflight science results from the orbiting Space Environment Survivability of Living Organisms (SESLO) experiment, executed by one of the two 10?cm cube-format payloads aboard the 5.5?kg Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite. The O/OREOS spacecraft was launched successfully to a 72° inclination, 650?km Earth orbit on 19 November 2010. This satellite provides access to the radiation environment of space in relatively weak regions of Earth's protective magnetosphere as it passes close to the north and south magnetic poles; the total dose rate is about 15 times that in the orbit of the International Space Station. The SESLO experiment measures the long-term survival, germination, and growth responses, including metabolic activity, of Bacillus subtilis spores exposed to the microgravity, ionizing radiation, and heavy-ion bombardment of its high-inclination orbit. Six microwells containing wild-type (168) and six more containing radiation-sensitive mutant (WN1087) strains of dried B. subtilis spores were rehydrated with nutrient medium after 14 days in space to allow the spores to germinate and grow. Similarly, the same distribution of organisms in a different set of microwells was rehydrated with nutrient medium after 97 days in space. The nutrient medium included the redox dye Alamar blue, which changes color in response to cellular metabolic activity. Three-color transmitted intensity measurements of all microwells were telemetered to Earth within days of each of the 48?h growth experiments. We report here on the evaluation and interpretation of these spaceflight data in comparison to delayed-synchronous laboratory ground control experiments.  相似文献   
10.
Photographs that depict presumed fluvial features on the martian surface have led geologists to hypothesize that water flowed across the early martian terrain. From this, it has been further hypothesized that the surface and atmospheric conditions on early Mars were similar to those on early Earth. Because the oldest fossil evidence of life on Earth dates back to this early period, at least 3.5 billion years ago, the possibility exists that the early Martian environment could have also been conducive to the origin of life. To investigate this possibility, universal signatures or bio-markers indicative of past (or present) biological activity must be identified for use in the search for life on Mars. Several potentially applicable biomarkers have been identified and include: organics (e.g., specific classes of lipids and hopanes), suites of specific inorganic and organic compounds, as well as the isotopic ratios of C, N, and S. Unfortunately, all of these bio-markers may be of biologic or abiotic origin; these origins are often difficult to distinguish. Thus, the discovery of any one of these compounds alone is not a bio-marker. Because minerals produced under biologic control have distinctive crystallographies, morphologies, and isotopic ratios that distinguishable from abiotically produced minerals with the same chemical composition, and are stable through geologic time, we propose the use of minerals resulting from biologically controlled mineralization processes as bio-markers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号