首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航空   5篇
航天技术   2篇
航天   1篇
  2013年   1篇
  2005年   1篇
  2003年   1篇
  1991年   1篇
  1988年   1篇
  1973年   1篇
  1969年   1篇
  1962年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The development of pulse compression radar at Sperry is related on the basis of the author's personal recollections. He discusses the first experiments, concept improvements, demonstration of the concept, system implementations, dealings with the US Patent Office, and finishing touches  相似文献   
2.
The design of adaptive filters for the tracking of high-performance maneuvering targets is a fundamental problem in real-time surveillance systems. As is well known, a filter which provides heavy smoothing can not accurately track an evasive maneuver, and conversely. Consequently, one is led to the consideration of adaptive methods of filter design. This paper presents an improved self-adaptive filter algorithm for on-line solution of the above problem. Basically, this algorithm utilizes the orthogonality property of the residual time series to force the filter to automatically track the optimal gain levels in a changing environment.  相似文献   
3.
Boundary layers in three dimensions   总被引:1,自引:0,他引:1  
  相似文献   
4.
In the deployment of pulse Doppler (PD) radar, determination of phase and amplitude stability is the most difficult measurement problem. Unique requirements are placed on pulse and carrier stability so that the radar can perform in strong clutter. Because of subclutter visibility and sensitivity specifications, coherent noise, which is insignificant for noncoherent pulse radars, becomes extremely important. In solving the measurement problem, special support equipment was developed which is considered to have reached such a degree of refinement that it is probably one of the most technically advanced pieces of field test equipment supporting any operational radar. This paper discusses stability requirements, sources of instability, and the combination of techniques selected for verification of compliance of the PD radar with the stability requirements. The results of a program to develop special field support equipment to satisfy the measurement requirements are emphasized. Results of field experience and the special training required of military field personnel to enable them to effectively use this relatively complex support equipment are discussed.  相似文献   
5.
The Solar Mass Ejection Imager (SMEI) was the first of a new class of heliospheric and astronomical white-light imager. A heliospheric imager operates in a fashion similar to coronagraphs, in that it observes solar photospheric white light that has been Thomson scattered by free electrons in the solar wind plasma. Compared with traditional coronagraphs, this imager differs in that it observes at much larger angles from the Sun. This in turn requires a much higher sensitivity and wider dynamic range for the measured intensity. SMEI was launched on the Coriolis spacecraft in January 2003 and was deactivated in September 2011, thus operating almost continuously for nearly nine years. Its primary objective was the observation of interplanetary transients, typically coronal mass ejections (CMEs), and tracking them continuously throughout the inner heliosphere. Towards this goal it was immediately effective, observing and tracking several CMEs in the first month of mission operations, with some 400 detections to follow. Along with this primary science objective, SMEI also contributed to many and varied scientific fields, including studies of corotating interaction regions (CIRs), the high-altitude aurora, zodiacal light, Gegenschein, comet tail disconnections and motions, and variable stars. It was also able to detect and track Earth-orbiting satellites and space debris. Along with its scientific advancements, SMEI also demonstrated a significantly improved accuracy of space weather prediction, thereby establishing the feasibility and usefulness of operational heliospheric imagers. In this paper we review the scientific and operational achievements of SMEI, discuss lessons learned, and present our view of potential next steps in future heliospheric imaging.  相似文献   
6.
Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration.  相似文献   
7.
The LDEF Interplanetary Dust Experiment was unique in providing a time history of impacts of micron-sized particles on six orthogonal faces of the vehicle over a span of nearly a full year. Over 15000 hits were recorded, representing a mix of zodiacal dust, meteor stream grains, orbital debris, perhaps beta-meteoroids, and possibly interstellar matter. Although the total number was higher than predicted, the relative panel activity distribution was near expectations. Detailed deconvolution of the impact record with orbital data is underway, to examine each of these populations. Very preliminary results of the fairly crude “first look” analysis suggest that debris is the major particle component at 500 km. The data show clear evidence of some known meteor streams as sharp, tightly-focused events, unlike their visible counterparts. Some apparent debris events show similar signatures. Data from the leading and trailing edges suggest a detection of beta-meteoroids, but the analysis is not yet conclusive. Absolute fluxes and flux ratios are not yet known, since the detector status analysis is yet incomplete.  相似文献   
8.
Nascap-2k is the updated version of the NASCAP/GEO spacecraft charging analysis code. In addition to packaging the physical content of NASCAP/GEO in a modern way, Nascap-2k incorporates other plasma analysis codes (in particular, the DynaPAC code) in order to extend its applicability to a wide variety of plasma environments. Nascap-2k also includes an interactive Object Toolkit for defining spacecraft surface models for analysis. In this paper we focus on the tenuous plasma charging capabilities of the code, with application to DSCS-III (geosynchronous environment), STEREO (solar wind environment) and MESSENGER (solar wind environment near 0.4 AU).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号