首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
航空   10篇
航天   5篇
  2017年   1篇
  2014年   2篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1968年   5篇
  1967年   2篇
排序方式: 共有15条查询结果,搜索用时 93 毫秒
1.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
2.
3.
Spatial perspective taking is the ability to reason about spatial relations relative to another’s viewpoint. Here, we propose a mechanistic hypothesis that relates mental representations of one’s viewpoint to the transformations used for spatial perspective taking. We test this hypothesis using a novel behavioral paradigm that assays patterns of response time and variation in those patterns across people. The results support the hypothesis that people maintain a schematic representation of the space around their body, update that representation to take another’s perspective, and thereby to reason about the space around their body. This is a powerful computational mechanism that can support imitation, coordination of behavior, and observational learning.  相似文献   
4.
5.
Triple-satellite-aided capture employs gravity-assist flybys of three of the Galilean moons of Jupiter in order to decrease the amount of ΔVΔV required to capture a spacecraft into Jupiter orbit. Similarly, triple flybys can be used within a Jupiter satellite tour to rapidly modify the orbital parameters of a Jovicentric orbit, or to increase the number of science flybys. In order to provide a nearly comprehensive search of the solution space of Callisto–Ganymede–Io triple flybys from 2024 to 2040, a third-order, Chebyshev's method variant of the p-iteration solution to Lambert's problem is paired with a second-order, Newton–Raphson method, time of flight iteration solution to the VV-matching problem. The iterative solutions of these problems provide the orbital parameters of the Callisto–Ganymede transfer, the Ganymede flyby, and the Ganymede–Io transfer, but the characteristics of the Callisto and Io flybys are unconstrained, so they are permitted to vary in order to produce an even larger number of trajectory solutions. The vast amount of solution data is searched to find the best triple-satellite-aided capture window between 2024 and 2040.  相似文献   
6.
We discuss the interaction between the magnetosphere of a young star and its surrounding accretion disk. We consider how an X-wind can be driven magnetocentrifugally from the inner edge of the disk where accreting gas is diverted onto stellar field lines either to flow onto the Sun or to be flung outwards with the wind. The X-wind satisfies many observational tests concerning optical jets, Herbig-Haro objects, and molecular outflows. Connections may exist between primitive solar system materials and X-winds. Chondrules and calcium-aluminum-rich inclusions (CAIs) experienced short melting events uncharacteristic of the asteroid belt where meteorites originate. The inner edge of the solar nebula has the shortest orbital timescale available to the system, a few days. Protosolar flares introduce another timescale, tens of minutes to hours. CAIs may form when solids are lifted from shaded portions of the disk close to the Sun and are exposed to its intense light for a day or so before they are flung by the X-wind to much larger distances. Chondrules were melted, perhaps many times, by flares at larger distances from the Sun before being launched and annealed, but not remelted, in the X-wind. Aerodynamic sorting explains the narrow range of sizes with which CAIs and chondrules are found in chondritic meteorites. Flare-generated cosmic-rays may induce spallation reactions that produce some of the short-lived radioactivities associated with primitive solar system rocks. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
7.
8.
9.
研磨和抛光是一个非常有前景、有成效的精加工方法。瑞士STAHLI公司是一家一直致力于研磨、抛光技术和设备研发和制造的厂家,该公司总部设在瑞士,在德国和美国都设有分厂,是单端面、双端面机床的制造世家。 研磨,是两个表面在一起摩擦的一种加工方法,表面之间有研磨介质(研磨液和研磨料),工件材料被载体表面(磨盘)和压在磨盘上的工件之间无数的松散的粒子磨去。研磨需要  相似文献   
10.
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号