首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   1篇
航天技术   3篇
航天   1篇
  2021年   1篇
  2014年   1篇
  2008年   1篇
  2003年   1篇
  1984年   1篇
排序方式: 共有5条查询结果,搜索用时 281 毫秒
1
1.
Bacterial spores are proper test organisms for studying problems of space biology and exobiology. During the Spacelab 1 mission, studies on the limiting factors for survival of Bacillus subtilis spores in free space have been performed. An exposure tray on the pallet of Spacelab 1 accomodated 316 samples of dry spores for treatment with space vacuum and/or the following selected wavelengths of solar UV: > 170 nm, 220 nm, 240nm, 260nm and 280 nm. After recovery, inactivation, mutation induction, reparability, and photochemical damages in DNA and protein have been studied. The results contribute to the understanding of the mechanisms of increased UV sensitivity of bacterial spores in vacuo and to a better assessment of the chance of survival of resistant forms in space and of interplanetary transfer of life.  相似文献   
2.
Due to high relative velocities, collisions of spacecraft in orbit with Space Debris (SD) or Micrometeoroids (MM) can lead to payload degradation, anomalies as well as failures in spacecraft operation, or even loss of mission. Flux models and impact risk assessment tools, such as MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) or ORDEM (Orbital Debris Engineering Model), and ESABASE2 or BUMPER II are used to analyse mission risk associated with these hazards. Validation of flux models is based on measured data. Currently, as most of the SD and MM objects are too small (millimeter down to micron sized) for ground-based observations (e.g. radar, optical), the only available data for model validation is based upon retrieved hardware investigations e.g. Long Duration Exposure Facility (LDEF), Hubble Space Telescope (HST), European Retrievable Carrier (EURECA). Since existing data sets are insufficient, further in-situ experimental investigation of the SD and MM populations are required. This paper provides an overview and assessment of existing and planned SD and MM impact detectors. The detection area of the described detectors is too small to adequately provide the missing data sets. Therefore an innovative detection concept is proposed that utilises existing spacecraft components for detection purposes. In general, solar panels of a spacecraft provide a large area that can be utilised for in-situ impact detection. By using this method on several spacecraft in different orbits the detection area can be increased significantly and allow the detection of SD and MM objects with diameters as low as 100 μm. The design of the detector is based on damage equations from HST and EURECA solar panels. An extensive investigation of those panels was performed by ESA and is summarized within this paper. Furthermore, an estimate of the expected sensitivity of the patented detector concept as well as examples for its implementation into large and small spacecraft are presented.  相似文献   
3.
Reproduction is a vital characteristic of life, and sex is the most common reproductive mode in the eukaryotic world. Sex and reproduction are not necessarily linked mechanisms: Sexuality without reproduction exists, while several forms of asexual reproduction are known. The occurrence of sexuality itself is paradoxical, as it is very costly in evolutionary terms. Most of the hypotheses (more than 20) attempting to explain the prevalence of sex fall into two categories: Sex either creates good gene combinations for adaptation to environments or eliminates bad gene combinations counteracting the accumulation of mutations. In spite of this apparent wealth of beneficial effects of sex, asexuality is not rare. Most eukaryotic, asexual lineages are short-lived and can only persist through the presence of sexual roots, but at least two animal groups, bdelloid rotifers and darwinulid ostracods, seem to claim the status of ancient asexuals. Research on (a)sexuality is relevant to astrobiology in a number of ways. First, strong relationships between the origin and persistence of life in extreme environments and reproductive mode are known. Second, the "habitability" of nonterrestrial environments to life greatly depends on reproductive mode. Whereas asexuals can do equally well or better in harsh environments, they fail to adapt fast enough to changing abiotic and biotic environments. Third, it has been shown that plants reproduce mainly asexually in space, and sperm production and motility in some vertebrates are hampered. Both findings indicate that extraterrestrial life under conditions different from Earth might be dominated by asexual reproduction. Finally, for exchange of biological material between planets, the choice of reproductive mode will be important.  相似文献   
4.
The LISA (Laser Interferometer Space Antenna) mission has been selected by the European Space Agency’s Science Programme Committee as the third large-class mission of the Cosmic Vision Programme, addressing the science theme of the Gravitational Universe. With a planned launch date in 2034, LISA will be the first ever space-borne Gravitational Wave observatory, relying on laser interferometry between three spacecraft orbiting the Sun in a triangular formation. Airbus is currently leading an industrial Phase A system study on behalf of the European Space Agency. The paper will address the astrodynamics challenges associated with the LISA constellation design, driven by tight requirements on the geometric quality metrics of the near equilateral formation.  相似文献   
5.
Strategies for in-orbit calibration of drag-free control systems   总被引:3,自引:0,他引:3  
Drag-Free Satellites (DFS) are a class of scientific satellite missions designed for research on fundamental physics as well as geodesy. They consist, basically, of a small inner satellite (test mass) located in a cavity inside a larger satellite, the normal one. The Drag-Free Attitude Control System (DFACS) is the most complex technology on-board these satellites. This key technology allows the residual accelerations on experiments on board the satellites to be significantly reduced. In order to achieve this very low disturbance environment (for some missions <10−14 g) the drag-free control system has to be optimized. This optimization process is required because of uncertainties in system parameters that demand a robustness of the control system. This paper will present approaches for in-orbit calibration of drag-free control systems. The discussion includes modeling, with scale factors and cross couplings, possible excitation signals, comparison of different parameter identification/estimation methods as well as simulation results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号