首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   1篇
航天技术   2篇
航天   2篇
  2014年   1篇
  2011年   3篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
In the wake of the Chelyabinsk airburst, the defense against hazardous asteroids is becoming a topic of high interest. This work improves the gravity tractor asteroid deflection approach by tracking realistic small body shapes with tilted ion engines. An algorithm for polyhedron tracking was evaluated in a fictitious impact scenario. The simulations suggest a capability increase up to 38.2% with such improved tilting strategies. The long- and short-term effects within polyhedron tracking are illustrated. In particular, the orbital reorientation effect is influential when realistic asteroid shapes and rotations are accounted for. Also analyzed is the subject of altitude profiles, a way to tailor the gravity tractor performance, and to achieve a steering ability within the B-plane. A novel analytical solution for the classic gravity tractor is derived. It removes the simulation need for classic tractor designs to obtain comparable two body model ΔvΔv figures. This paper corroborates that the asteroid shape can be exploited for maximum performance. Even a single engine tilt adjustment at the beginning of deflection operations yields more deflection than a fixed preset tilt.  相似文献   
2.
CubeSail is a nano-solar sail mission based on the 3U CubeSat standard, which is currently being designed and built at the Surrey Space Centre, University of Surrey. CubeSail will have a total mass of around 3 kg and will deploy a 5 × 5 m sail in low Earth orbit. The primary aim of the mission is to demonstrate the concept of solar sailing and end-of-life de-orbiting using the sail membrane as a drag-sail. The spacecraft will have a compact 3-axis stabilised attitude control system, which uses three magnetic torquers aligned with the spacecraft principle axis as well as a novel two-dimensional translation stage separating the spacecraft bus from the sail. CubeSail’s deployment mechanism consists of four novel booms and four-quadrant sail membranes. The proposed booms are made from tape-spring blades and will deploy the sail membrane from a 2U CubeSat standard structure. This paper presents a systems level overview of the CubeSat mission, focusing on the mission orbit and de-orbiting, in addition to the deployment, attitude control and the satellite bus.  相似文献   
3.
Recently, there has been a renewed interest in Solar Sails as an alternative means of space propulsion. Many different attitude control systems have been designed for Solar Sails taking advantage of the centre-of-mass (CM)/centre-of-pressure (CP) offset while utilising the main sail structure to position the actuators. However, by attaching actuators to the main sail, these systems increase the risks involved in the deployment subsystem.  相似文献   
4.
A Cubesat mission with a deployable solar sail of 5 meter by 5 meter in a sun-synchronous low earth orbit is analyzed to demonstrate solar sailing using active attitude stabilization of the sail panel. The sail panel is kept parallel to the orbital plane to minimize aerodynamic drag and optimize the orbit inclination change caused by the solar pressure force normal to the sail surface. A practical control system is proposed, using a combination of small 2-dimensional translation of the sail panel and 3-axis magnetic torquing which is proved to have sufficient control authority over the gravity gradient and aerodynamic disturbance torques. Miniaturized CMOS cameras are used as sun and nadir vector attitude sensors and a robust Kalman filter is used to accurately estimate the inertially referenced body rates from only the sun vector measurements. It is shown through realistic simulation tests that the proposed control system, although inactive during eclipse, will be able to stabilize the sail panel to within ±2° in all attitude angles during the sunlit part of the orbit, when solar sailing is possible.  相似文献   
5.
A recent effort to develop single-gimbal variable-speed control moment gyroscopes (VSCMGs) for a combined energy storage and attitude control subsystem (ESACS) on small satellites has culminated in laboratory validation of the concept. A single actuator prototype comprised of a cutting-edge Carbon Fiber rotor and COTS motor/generator components has been developed, balanced, bench tested, and integrated onto a spherical air-bearing structure. This structure is used to demonstrate the primary capability of a VSCMG to act as a dynamo whilst simultaneously changing a spacecraft's orientation in a controlled fashion. As originally predicted, the actuator's flywheel spins up when energy is supplied (supported via a direct energy transfer power architecture), then spins down when the energy source is removed, porting the energy released to run a resistive load.The work presented gives an overview of the governing principles of the technology, addresses the underlying mission and design requirements, and presents the prototype design. Then, effectiveness of the prototype integrated on a three-axis test article is presented along with its associated test data. Finally, discussion of these results and identification of future research concludes the work. The benefits of this technology for future space missions are that system consolidation permits mass reduction, higher instantaneous peak power is available as compared to conventional secondary battery systems, state-of-charge measurement is readily available from wheel speed feedback, and torque amplification through gimballing permits efficient actuator control. The technology demonstrated is exciting and leaves the door open for future development via inclusion of magnetic levitation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号