首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航天技术   5篇
航天   3篇
  2009年   1篇
  2001年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1984年   1篇
排序方式: 共有8条查询结果,搜索用时 171 毫秒
1
1.
Cometary ices are believed to contain water, carbon monoxide, methane and ammonia, and are possible sites for the formation and preservation of organic compounds relating to the origin of life. Cosmic rays, together with ultraviolet light, are among the most effective energy sources for the formation of organic compounds in space. In order to study the possibility of the formation of amino acids in comets or their precursory bodies (interstellar dust grains), several types of ice mixtures made in a cryostat at 10 K ("simulated cometary ices") were irradiated with high energy protons. After irradiation, the volatile products were analyzed with a quadrupole mass spectrometer, while temperature of the cryostat was raised to room temperature. The non-volatile products remaining in the cryostat at room temperature were collected with water. They were acid-hydrolyzed, and analyzed by ion-exchange chromatography. When an ice mixture of carbon monoxide (or methane), ammonia and water was irradiated, some hydrocarbons were formed, and amino acids such as glycine and alanine were detected in the hydrolyzate. These results suggest the possible formation of "amino acid precursors" (compounds yielding amino acids after hydrolysis) in interstellar dust grains by cosmic radiation. We previously reported that amino acid precursors were formed when simulated primitive planetary atmospheres were irradiated with cosmic ray particles. It will be of great interest to compare the amount of bioorganic compounds that were formed in the primitive earth and that brought by comets to the earth.  相似文献   
2.
Many agricultural and other experiments relating to the development of a Controlled Ecological Life Support System (CELSS) were proposed by scientists throughout Japan in the fall of 1982. To develop concrete experimental concepts from these proposals, the engineering feasibility of each proposal was investigated by a CELLS experiment concept study group under the support of the National Aerospace Laboratory. The conclusions of the group were described in two documents, /1/, /2/. Originally, the study group did not clearly define necessary missions leading to the goal of an operational CELSS for spaceflight. Therefore, the CELSS experiment concept study group met again to clarify the goals of CELSS and to determine three phases to achieve the goals. The resulting phases, or missions, and preliminary proposals and studies needed to develop a CELLS are described herein.  相似文献   
3.
Sounding rocket experiment of bare electrodynamic tether system   总被引:1,自引:0,他引:1  
An overview of a sounding rocket, S-520-25th, project on space tether technology experiment is presented. The project is prepared by an international research group consisting of Japanese, European, American, and Australian researchers. The sounding rocket will be assembled by the ISAS/JAXA and will be launched in the summer of 2009. The sounding rocket mission includes two engineering experiments and two scientific experiments. These experiments consist of the deployment of bare electrodynamic tape tether in space, a quick ignition test of hollow cathode system in space, the demonstration of bare electrodynamic tether system in space, and the test of the OML (orbital-motion-limit) current collection theory.  相似文献   
4.
This paper describes outline of the piggy-back satellite “INDEX” for demonstration of advanced satellite technologies as well as for observation of fine structure of aurora. Aurora observation will be carried out by three cameras(MAC) with a monochromatic UV filter. Electron and ion spectrum analyzer (ESA/ISA) will measure the particle phenomena together with the aurora imaging. INDEX satellite will be launched in 2002 by Japanese H2-A. The satellite is mainly controlled by the high-speed, fault-tolerant on-board RICS processor (three-voting system of SH-3). The attitude control is a compact system of three-axis stabilization. Although the size of INDEX is small (50Kg class), several newly-developed technologies are applied to the satellite system, including silicon-on-insulator devices, variable emittance radiator, solar-concentrated paddles, lithium-ion battery, and GPS receiver with all-sky antenna-coverage.  相似文献   
5.
We have been studying the survival rates of some species of terrestrial unicellular and multicellular organism (viruses, bacteria, yeasts, fungi, algae, etc.) under simulated interstellar conditions, in connection with planetary quarantine. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 K, 4 x 10(-8) torr), and proton irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, tobacco mosaic virus, Bacillus subtilis spores, Staphylococcus aureus, Micrococcus flavus, Aspergillus niger spores, and Clostridium mangenoti spores showed survival rates of 82, 45, 74, 13, 28, and 25%, respectively.  相似文献   
6.
The ability of living organisms to survive extraterrestrial conditions has implications for the origins of life in the solar system. We have therefore studied the survival of viruses, bacteria, yeast, and fungi under simulated Martian conditions. The environment on Mars was simulated by low temperature, proton irradiation, ultraviolet irradiation, and simulated Martian atmosphere (CO2 95.46%, N2 2.7%, water vapor 0.03%) in a special cryostat. After exposure to these conditions, tobacco mosaic virus and spores of Bacillus, Aspergillus, Clostridium, and some species of coccus showed significant survival.  相似文献   
7.
In connection with planetary quarantine, we have been studying the survival rates of nine species of terrestrial microorganisms (viruses, bacteria, yeasts, fungi, etc.) under simulated interstellar conditions. If common terrestrial microorganisms cannot survive in space even for short periods, we can greatly reduce expenditure for sterilizing space probes. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 k, 4 x 10(-6) torr), and protons irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, Tobacco mosaic virus, Bacillus subtilis spores, Aspergillus niger spores and Clostridiun mangenoti spores showed survival rates of 82%, 45%, 28%, and 25%, respectively. Furthermore. pathogenic Candida albicans showed 7% survival after irradiation corresponding to about 60 years in space.  相似文献   
8.
Simulated planetary atmospheres (mixtures of simple gases) were irradiated with high energy particles to simulate an action of cosmic rays. When a mixture of carbon monoxide, nitrogen and water was irradiated with 2.8-40 MeV protons, a wide variety of bioorganic compounds including amino acids, imidazole, and uracil were identified in the products. The amount of amino acids was proportional to the energy deposit to the system. Various kinds of simulated planetary atmospheres, such as "Titan type" and "Jovian type", were also irradiated with high energy protons, and gave amino acids in the hydrolyzed products. Since cosmic rays are a universal energy source in space, it was suggested that formation of bioorganic compounds in planetary atmospheres is inevitable in the course of cosmic evolution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号