首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
航空   4篇
航天技术   10篇
航天   3篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2000年   2篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1989年   1篇
  1985年   1篇
排序方式: 共有17条查询结果,搜索用时 38 毫秒
1.
Potatoes (Solanum tuberosum) have a strong potential as a useful crop species in a functioning CELSS. The cultivar Denali has produced 37.5 g m-2 d-1 when grown for 132 days with the first 40 days under a 12-h photoperiod and a light:dark temperature cycle of 20 degrees C:16 degrees C, and then 92 days under continuous irradiance and a temperature of 16 degrees C. Irradiance was at 725 micromoles m-2 s-1 PPF and carbon dioxide at 1000 micromoles mol-1. The dried tubers had 82% carbohydrates, 9% protein and 0.6% fat. Other studies have shown that carbon dioxide supplementation (1000 micromoles mol-1) is of significant benefit under 12-h irradiance but less benefit under 24 h irradiance. Irradiance cycles of 60 minutes light and 30 minutes dark caused a reduction of more than 50% in tuber weight compared to cycles of 16 h light and 8 h dark. A diurnal temperature change of 22 degrees C for the 12-h light period to 14 degrees C during the 12-h dark period gave increased yields of 30% and 10% for two separate cultivars, compared with plants grown under a constant 18 degrees C temperature. Cultivar screening under continuous irradiance and elevated temperatures (28 degrees C) for 8 weeks of growth indicated that the cvs Haig, Denali, Atlantic, Desiree and Rutt had the best potential for tolerance to these conditions. Harvesting of tubers from plants at weekly intervals, beginning at 8 weeks after planting, did not increase yield over a single final harvest. Spacing of plants on 0.055 centers produced greater yield per m2 than spacing at 0.11 or 0.22 m2. Plants maintained 0.33 meters apart (0.111 m2 per plant) in beds produced the same yields when separated by dividers in the root matrix as when no separation was made.  相似文献   
2.
Abstract

Language has been proposed as a medium that serves to promote spatial orientation through integrating geometric and featural information (Spelke, 2003 Spelke, E. S. 2003. “What makes us smart? Core knowledge and natural language”. In Language in mind: Advances in the study of language and thought, Edited by: Gentner, D. and Goldin-Meadow, S. 277312. Cambridge, MA: MIT Press..  [Google Scholar]). This proposal has been explored in dual-task experiments where linguistic resources are blocked by verbal shadowing. Although some studies report disruption in using environmental cues for spatial reorientation, findings have not been consistently replicated, and the source of disruption to reorientation by verbal shadowing remains unclear. We examined conditions under which verbal shadowing affects reorientation. Shadowing of meaningful language disrupted healthy adults' use of geometric and featural information to reorient only when task instructions were unclear and when extraneous visual information provided a source of nonlinguistic interference. Reorientation was examined during the shadowing of meaningful prose or nonword syllables and was similar under both concurrent task conditions. These results indicate that language is not necessary for spatial cue integration.  相似文献   
3.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   
4.
This article looks at the Provisional European Telecommunications Satellite Organization's (EUTELSAT) role and policies in the field of transponder leasing for television programme distribution and discusses a number of specific issues which have assumed importance in the development of that role. Encryption of signals is considered in the context of crossborder overspill. The extent to which continuity of service can be offered, by freedom from preemption and/or the provision of back-up capacity for restoration, is discussed. The article then outlines the scope of the leased services offered by EUTELSAT and the development of an appropriate tariff structure for those services. Finally the case for selling, rather than leasing, transponders is examined.  相似文献   
5.
Light emitting diodes (LEDs) are a promising irradiation source for plant growth in space. Improved semiconductor technology has yielded LED devices fabricated with gallium aluminum arsenide (GaAlAs) chips which have a high efficiency for converting electrical energy to photosynthetically active radiation. Specific GaAlAs LEDs are available that emit radiation with a peak wavelength near the spectral peak of maximum quantum action for photosynthesis. The electrical conversion efficiency of installed systems (micromole s-1 of photosynthetic photons per watt) of high output LEDs can be within 10% of that for high pressure sodium lamps. Output of individual LEDs were found to vary by as much as 55% from the average of the lot. LED ratings, in mcd (luminous intensity per solid angle), were found to be proportional to total photon output only for devices with the same dispersion angle and spectral peak. Increasing current through the LED increased output but also increased temperature with a consequent decrease in electrical conversion efficiency. A photosynthetic photon flux as high as 900 micromoles m-2 s-1 has been produced on surfaces using arrays with LEDs mounted 7.6 mm apart, operating as a current of 50 mA device-1 and at an installed density of approximately 17,200 lamps m-2 of irradiated area. Advantages of LEDs over other electric light sources for use in space systems include long life, minimal mass and volume and being a solid state device.  相似文献   
6.
Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure.  相似文献   
7.
The existence of a surface-bounded exosphere about Mercury was discovered through the Mariner 10 airglow and occultation experiments. Most of what is currently known or understood about this very tenuous atmosphere, however, comes from ground-based telescopic observations. It is likely that only a subset of the exospheric constituents have been identified, but their variable abundance with location, time, and space weather events demonstrate that Mercury’s exosphere is part of a complex system involving the planet’s surface, magnetosphere, and the surrounding space environment (the solar wind and interplanetary magnetic field). This paper reviews the current hypotheses and supporting observations concerning the processes that form and support the exosphere. The outstanding questions and issues regarding Mercury’s exosphere stem from our current lack of knowledge concerning the surface composition, the magnetic field behavior within the local space environment, and the character of the local space environment.  相似文献   
8.
Education and public outreach (EPO) is one of the four components of the International Heliophysical Year (IHY). It is fundamental in achieving one of IHY’s primary objectives which is to “demonstrate the beauty, relevance and significance of Space and Earth science to the world.”  相似文献   
9.
Biomass Production System (BPS) plant growth unit.   总被引:2,自引:0,他引:2  
The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses its own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive.  相似文献   
10.
A flight experiment, ASTROCULTURE(TM)-1 (ASC-1), to evaluate the operational characteristics and hardware performance of a porous tube nutrient delivery system (PTNDS) was flown on STS-50 as part of the U.S. Microgravity Laboratory-1 mission, 25 June to 9 July, 1992. This experiment is the first in a series of planned ASTROCULTURE(TM) flights to validate the performance of subsystems required to grow plants in microgravity environments. Results indicated that the PTNDS was capable of supplying water and nutrients to plants in microgravity and that its performance was similar in microgravity to that in 1g on Earth. The data demonstrated that water transfer rates through a rooting matrix are a function of pore size of the tubes, the degree of negative pressure on the 'supply' fluid, and the pressure differential between the 'supply' and 'recovery' fluid loops. A slightly greater transfer rate was seen in microgravity than in 1g, but differences were likely related to the presence of hydrostatic pressure effects at 1g. Thus, this system can be used to support plant growth in microgravity or in partial gravity as on a lunar or Mars base. Additional subsystems to be evaluated in the ASTROCULTURE(TM) flight series of experiments include lighting, humidity control and condensate recovery, temperature control, nutrient composition control, CO2 and O2 control, and gaseous contaminant control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号