首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
航空   4篇
航天技术   5篇
综合类   2篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2011年   1篇
  1995年   1篇
  1986年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Lake water height is a key variable in water cycle and climate change studies, which is achievable using satellite altimetry constellation. A method based on data processing of altimetry from several satellites has been developed to interpolate mean lake surface (MLS) over a set of 22 big lakes distributed on the Earth. It has been applied on nadir radar altimeters in Low Resolution Mode (LRM: Jason-3, Saral/AltiKa, CryoSat-2) in Synthetic Aperture Radar (SAR) mode (Sentinel-3A), and in SAR interferometric (SARin) mode (CryoSat-2), and on laser altimetry (ICESat). Validation of the method has been performed using a set of kinematic GPS height profiles from 18 field campaigns over the lake Issykkul, by comparison of altimetry’s height at crossover points for the other lakes and using the laser altimetry on ICESat-2 mission. The precision reached ranges from 3 to 7 cm RMS (Root Mean Square) depending on the lakes. Currently, lake water level inferred from satellite altimetry is provided with respect to an ellipsoid. Ellipsoidal heights are converted into orthométric heights using geoid models interpolated along the satellite tracks. These global geoid models were inferred from geodetic satellite missions coupled with absolute and regional anomaly gravity data sets spread over the Earth. However, the spatial resolution of the current geoid models does not allow capturing short wavelength undulations that may reach decimeters in mountaineering regions or for rift lakes (Baikal, Issykkul, Malawi, Tanganika). We interpolate in this work the geoid height anomalies with three recent geoid models, the EGM2008, XGM2016 and EIGEN-6C4d, and compare them with the Mean Surface of 22 lakes calculated using satellite altimetry. Assuming that MLS mimics the local undulations of the geoid, our study shows that over a large set of lakes (in East Africa, Andean mountain and Central Asia), short wavelength undulations of the geoid in poorly sampled areas can be derived using satellite altimetry. The models used in this study present very similar geographical patterns when compared to MLS. The precision of the models largely depends on the location of the lakes and is about 18 cm, in average over the Earth. MLS can serve as a validation dataset for any future geoid model. It will also be useful for validation of the future mission SWOT (Surface Water and Ocean Topography) which will measure and map water heights over the lakes with a high horizontal resolution of 250 by 250 m.  相似文献   
2.
SSM (Solar Sail Materials) is an on-going project for the European Space Agency (ESA) relying on past and recent European solar sail design projects. It aims at developing and testing future technologies suitable for large, operational solar sailcrafts.  相似文献   
3.
This paper discusses past, present, and future strategic aircraft requirements for ingress and egress, then focuses on the technologies of the CO2 Laser Radar and the Automatic Target Recognizer. Present systems currently consist of a mix of various sensors which are not correlated until each is presented to the operator. Additionally, active sensors are highly detectable by threat warning systems, while passive sensors do not provide critical range information. CO2 Laser and ATR technologies will significantly contribute to the resolution of these issues.  相似文献   
4.
<正>Early indications of the state of the business aircraft sales market point in decidedly different directions-at least based on evidence from Q1 2019 earnings calls for publicly traded companies, aircraft sales databases, and presentations and conversations from various industry conferences.New aircraft sales appear to have got off to a good start in the first three months of the year, with four of the big five OEMs reporting book-to-bill  相似文献   
5.
The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120° apart around the Juno spacecraft to measure complete electron distributions from ~0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ~5 eV to ~50 keV over an instantaneous field of view of 270°×90° in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with mm~2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.  相似文献   
6.
This study presents the time variations of the total electron content in the South East Asian equatorial ionization anomaly. The time variation of the TEC is analyzed through the period 2006–2011 by using a latitudinal chain of GPS stations extending in the northern and southern hemisphere. The data shows that the shape of the diurnal variation of the TEC depends on the latitude: a plateau is observed at the stations near the equator and a Gaussian at the station distant from the equator. We observe a semiannual pattern in all the stations with maxima at equinox. In both hemispheres, the amplitude of the crest is larger in spring than autumn from 2006 to 2008 and smaller in spring than in autumn from 2009 to 2011. We also observe an asymmetry between the amplitude and the position of the two crests of ionization. There is a very high level of correlation between the amplitude of the TEC at the two crests and the sunspot number: ∼0.88. During the deep solar minimum 2008–2009, the amplitude of crests of ionization becomes small during several months in summer and winter. The results show that both crests move significantly equatorward in winter than other seasons and there is a tendency for both crests to appear earlier in winter and later in summer.  相似文献   
7.
This paper presents the vertical total electron content vTEC variations for three African stations, located at mid-low and equatorial latitudes, and operating since more than 10 years. The vTEC of the middle latitude GPS station in Alexandria, Egypt (31.2167°N; 29.9667°E, geographic) is compared to the vTEC of two others GPS stations: the first one in Rabat/Morocco (33.9981°N; 353.1457°E, geographic), and the second in Libreville/Gabon (0.3539°N; 9.6721°E, geographic). Our results discussed the diurnal, seasonal, and solar cycle dependences of vTEC at the local ionospheric conditions, during different phases of solar cycle in the light of the classification of Legrand and Simon. The vTEC over Alexandria exhibits the well-known equinoctial asymmetry which changes with the phases of the solar cycle; the spring vTEC is larger than that of autumn during the maximum, decreasing and minimum phases of solar cycle 23. During the increasing phase of solar cycle 24, it is the contrary. The diurnal variation of the vTEC presents multiple maxima during the equinox from 2005 to 2008 and during the summer solstice from 2006 to 2012. A nighttime vTEC enhancement and winter anomaly are also observed. During the deep solar minimum (2006–2009) the diurnal variation of the vTEC observed over Alexandria is similar to the diurnal variation observed during quiet magnetic period at equatorial latitudes. We observed also that the amplitude of vTEC at Libreville is larger than the amplitude of vTEC observed at Alexandria and Rabat, indeed Libreville is near the southern crest of the Equatorial Ionization anomaly. Finally, the correlation coefficient between vTEC and the sunspot number Rz is high and changes with solar cycle phases.  相似文献   
8.
正Depending upon the data,the so-called Business Aviation'recovery'has now been underway for the past nine to 10 years,through ups and downs,and twists and turns.Good news:new business jet sales have been quite robust through the first half of 2019,with OEMs recording book-to-bills above 1.0 and finally beginning to replenish backlogs,which had been slowly declining over the  相似文献   
9.
Interest in the pulse tube comes from its potential for high reliability and low level of induced vibration.A numerical model has been developed to provide a tool for practical design. It has been successfully validated against the experimental results obtained with a single stage double inlet pulse tube which has achieved a temperature of 28 K at a frequency of a few Hz.Further developments have demonstrated the capability of operating a pulse tube at higher frequencies in association with a Stirling pressure oscillator.Current projects include coaxial geometry for miniature pulse tubes with linear resonant pressure oscillators. A 4K multistaged pulse tube is also in development.  相似文献   
10.
Aymeric Spiga  Don Banfield  Nicholas A. Teanby  François Forget  Antoine Lucas  Balthasar Kenda  Jose Antonio Rodriguez Manfredi  Rudolf Widmer-Schnidrig  Naomi Murdoch  Mark T. Lemmon  Raphaël F. Garcia  Léo Martire  Özgür Karatekin  Sébastien Le Maistre  Bart Van Hove  Véronique Dehant  Philippe Lognonné  Nils Mueller  Ralph Lorenz  David Mimoun  Sébastien Rodriguez  Éric Beucler  Ingrid Daubar  Matthew P. Golombek  Tanguy Bertrand  Yasuhiro Nishikawa  Ehouarn Millour  Lucie Rolland  Quentin Brissaud  Taichi Kawamura  Antoine Mocquet  Roland Martin  John Clinton  Éléonore Stutzmann  Tilman Spohn  Suzanne Smrekar  William B. Banerdt 《Space Science Reviews》2018,214(7):109
In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号