首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航天技术   4篇
  2013年   3篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
In this work, the foF2 and hmF2 parameters at the conjugate points near the magnetic equator of Southeast Asia are studied and compared with the International Reference Ionosphere (IRI) model. Three ionosondes are installed nearly along the magnetic meridian of 100°E; one at the magnetic equator, namely Chumphon (10.72°N, 99.37°E, dip angle 3.0°N), and the other two at the magnetic conjugate points, namely Chiang Mai (18.76°N, 98.93°E, dip angle 12.7°N) and Kototabang (0.2°S, 100.30°E, dip angle 10.1°S). The monthly hourly medians of the foF2 and hmF2 parameters are calculated and compared with the predictions obtained from the IRI-2007 model from January 2004 to February 2007. Our results show that: the variations of foF2 and hmF2 predicted by the IRI-2007 model generally show the similar feature to the observed data. Both parameters generally show better agreement with the IRI predictions during daytime than during nighttime. For foF2, most of the results show that the IRI model overestimates the observed foF2 at the magnetic equator (Chumphon), underestimates at the northern crest (Chiang Mai) and is close to the measured ones at the southern crest of the EIA (Kototabang). For hmF2, the predicted hmF2 values are close to the hmF2(M3000F2OBS) during daytime. During nighttime, the IRI model gives the underestimation at the magnetic equator and the overestimation at both EIA crests. The results are important for the future improvements of the IRI model for foF2 and hmF2 over Southeast Asia region.  相似文献   
2.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   
3.
The equatorial spread-F (ESF) is a phenomenon of ionopheric irregularities which are mainly generated by the generalized Rayleigh–Taylor (R–T) instability mechanism in conjunction with the other physical mechanisms, originated at the bottom side of the F-layer in the equatorial region after sunset. It degrades the quality of signals that propagate through these irregularities, especially in the navigation satellite system, which requires the high integrity signals. In this work, we analyze the ESF statistics obtained from the FM/CW ionosonde stations over Thailand longitude sector. One is at Chumphon (10.72°N, 99.37°E, dip latitude 3.0°), located near the geomagnetic equator, and the other station is located at Chiangmai (18.76°N, 98.93°E, dip latitude 12.7°). Both stations are as part of the South-East Asia Low Latitude Ionospheric Network (SEALION) project. The ionograms are obtained at every 15 min from September 2004 to August 2005, which has the monthly mean of solar 10.7 cm flux (F10.7) from ∼80 to ∼110. In addition, we compare the diurnal patterns between the ESF occurrences and the variation of virtual height of the F-layer bottom side (h’F) of these two stations. The results show that the ESF occurrences at Chumphon stations are higher than Chiangmai station in all seasons. The high ESF occurrences of both stations mostly occur in equinoctial months corresponded with the rapid rising of the monthly mean h’F in the post-sunset. However, some inconsistent results are still observed, implying the role of other factors such as gravity waves and planetary waves to ESF occurrences.  相似文献   
4.
In this paper, the F2-layer critical frequency (foF2) and peak height (hmF2) measured by the FM/CW ionosonde at Thailand equatorial latitude station, namely Chumphon (10.72°N, 99.37°E, dip 3.22) are presented. The measurement data during low solar activity from January 2004 to December 2006 are analyzed based on the diurnal, seasonal variation. The results are then compared with IRI-2001 model predictions. Our study shows that: (1) In general, both the URSI and CCIR options of the IRI model give foF2 close to the measured ones, but the CCIR option produces a smaller range of deviation than the URSI option. The agreement during daytime is generally better than during nighttime. Overestimation mostly occurs in 2004 and 2006, while underestimation is during pre-sunrise hours in June solstice in 2005. The peak foF2 around sunset is higher during March equinox and September equinox than the other seasons, with longer duration of maximum levels in March equinox than September equinox. Large coefficients of variability foF2 occur during pre-sunrise hours. Meanwhile, the best agreement between the observed foF2 and the IRI model is obtained in June solstice. (2) In general, The IRI (CCIR) model predicts the observed hmF2 well during daytime in June solstice from 2004–2006, but it overestimates during March equinox, September equinox and December solstice. For nighttime, the model overestimates hmF2 values for all seasons especially during March equinox and September equinox. However, the model underestimates hmF2 values during September equinox and for some cases during June solstice and December solstice at pre-sunrise. The agreement between the IRI model and the hmF2(M3000OBS) is worst around noontime, post-sunset and pre-sunrise hours. All comparative studies give feedback for new improvements of CCIR and URSI IRI models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号