首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   1篇
航天技术   1篇
  2013年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 13 毫秒
1
1.
The present study is an assessment and identification of urban heat island (UHI) in the environment of one of the fastest urbanizing city of India, Delhi Metropolis, employing satellite image of ASTER and Landsat 7 ETM+ in the thermal infrared region 3–14 μm. Temporal (2001 and 2005) ASTER datasets were used to analyze the spatial structure of the thermal urban environment subsequently urban heat island (UHI) in relation to the urban surface characteristics and land use/land cover (LULC). The study involves derivation of parameters governing the surface heat fluxes, constructing statistics of ASTER thermal infrared images along with validation through intensive in situ measurements. The average images reveal spatial and temporal variations of land surface temperature (LST) of night-time and distinct microclimatic patterns. Central Business District (CBD) of Delhi, (Connaught Place, a high density built up area), and commercial/industrial areas display heat islands condition with a temperature greater than 4 °C compared to the suburbs. The small increase in surface temperature at city level is mainly attributed to cumulative impact of human activities, changes in LULC pattern and vegetation density. In this study the methodology takes into account spatially-relative surface temperatures and impervious surface fraction value to measure surface UHI intensity between the urban land cover and rural surroundings. Both the spatial and temporal variation in surface temperature associated with impervious surface area (ISA) has been evaluated to assess the effect of urbanization on the local climate.  相似文献   
2.
In multisensor target tracking systems measurements from the same target can arrive out of sequence. Such "out-of-sequence" measurement (OOSM) arrivals can occur even in the absence of scan/frame communication time delays. The resulting problem - how to update the current state estimate with an "older" measurement - is a nonstandard estimation problem. It was solved first (suboptimally, then optimally) for the case where the OOSM lies between the two last measurements, i.e, its lag is less than a sampling interval - the 1-step-lag case. The real world has, however, OOSMs with arbitrary lag. Subsequently, the suboptimal algorithm was extended to the case of an arbitrary (multistep) lag, but the resulting algorithm required a significant amount of storage. The present work shows how the 1-step-lag algorithms can be generalized to handle an arbitrary (multistep) lag while preserving their main feature of solving the update problem without iterating. This leads only to a very small (a few percent) degradation of MSE performance. The incorporation of an OOSM into the data association process is also discussed. A realistic example with two GMTI radars is presented. The consistency of the proposed algorithm is also evaluated and it is found that its calculated covariances are reliable.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号