首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
航空   6篇
航天技术   2篇
航天   4篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2002年   1篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
排序方式: 共有12条查询结果,搜索用时 328 毫秒
1.
This paper describes a technique for providing phase compensation to signals received at widely-spaced antennas and processed at a central location. Self-compensation is provided for pathlength variations in reference-signal distribution systems. The technique may be adapted to include the measurement and compensation of signal-channel phase variations. Practical systems which require this type of compensation include interferometric systems used for position and position-rate measurements of missiles and spacecraft, interferometers and arrays of antennas used for radio and radar astronomy, and arrays of large-aperture antennas used for deep-space communications.  相似文献   
2.
We have analyzed the degree of racemization of aspartic acid in permafrost samples from Northern Siberia, an area from which microorganisms of apparent ages up to a few million years have previously been isolated and cultured. We find that the extent of aspartic acid racemization in permafrost cores increases very slowly up to an age of approximately 25,000 years (around 5 m in depth). The apparent temperature of racemization over the age range of 0-25,000 years, determined using measured aspartic acid racemization rate constants, is -19 degrees C. This apparent racemization temperature is significantly lower than the measured environmental temperature (-11 to -13 degrees C) and suggests active recycling of D-aspartic acid in Siberian permafrost up to an age of around 25,000 years. This indicates that permafrost organisms are capable of repairing some molecular damage incurred while in a "dormant" state over geologic time.  相似文献   
3.
A previously reported HF loop antenna array for multipolarization direction finding consisting of two spaced loops is described. The method is compatible with twin channel Watson-Watt operation as an Adcock so that the direction finding process is independent of polarization characteristics of the element pattern. Experimentally measured direction finder (DF) bearings were compared with near simultaneous polarimeter data and conventional crossed loops bearings. A major reduction in polarization error was obtained at the expense of full 360° azimuth response. It is theoretically possible to cover 360° with two similar arrays of the type investigated or with crossed loops elements with quadrature phase shifters.  相似文献   
4.
Stable carbon isotope ratios (delta(13)C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of delta(13)C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the delta(13)C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO(2 )fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.  相似文献   
5.
The relative abundance of the protein amino acids has been previously investigated as a potential marker for biogenicity in meteoritic samples. However, these investigations were executed without a quantitative metric to evaluate distribution variations, and they did not account for the possibility of interdisciplinary systematic error arising from inter-laboratory differences in extraction and detection techniques. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and stochastic probabilistic artificial neural networks (ANNs) were used to compare the distributions for nine protein amino acids previously reported for the Murchison carbonaceous chondrite, Mars meteorites (ALH84001, Nakhla, and EETA79001), prebiotic synthesis experiments, and terrestrial biota and sediments. These techniques allowed us (1) to identify a shift in terrestrial amino acid distributions secondary to diagenesis; (2) to detect differences in terrestrial distributions that may be systematic differences between extraction and analysis techniques in biological and geological laboratories; and (3) to determine that distributions in meteoritic samples appear more similar to prebiotic chemistry samples than they do to the terrestrial unaltered or diagenetic samples. Both diagenesis and putative interdisciplinary differences in analysis complicate interpretation of meteoritic amino acid distributions. We propose that the analysis of future samples from such diverse sources as meteoritic influx, sample return missions, and in situ exploration of Mars would be less ambiguous with adoption of standardized assay techniques, systematic inclusion of assay standards, and the use of a quantitative, probabilistic metric. We present here one such metric determined by sequential feature extraction and normalization (PCA), information-driven automated exploration of classification possibilities (HCA), and prediction of classification accuracy (ANNs).  相似文献   
6.
The effects of the factorial combination of two light intensities (200 and 800 μmol m−2 s−1) and two CO2 concentrations (360 and 800 ppm) were studied on the productivity and nutritional quality of spinach (Spinacia oleracea L.) grown under controlled environment. After 6 weeks within a growth chamber, spinach plants were sampled and analyzed for productivity and quality. There were no statistically significant interactions between the effects of light and CO2 for all of the variables studied, except for the nitrate and oxalic acid content of the leaves. High light and high CO2 independently one from the other, promoted spinach productivity, and the accumulation of ascorbic acid, while their interactive effect limited the accumulation of nitrate and oxalic acid in the spinach leaves. The results highlight the importance of considering the effects of the interaction among environmental variables on maximizing production and the nutritional quality of the food when cultivating and modeling the plant response in controlled environment systems such as for bioregenerative life support.  相似文献   
7.
The phasefront distortion imposed on space signals by fine-grained refractivity variations of the atmosphere is an important consideration in the design of large-aperture antennas, antenna arrays, antenna systems for measuring spacecraft position and position-rate, and radioastronomy systems. The distortion caused by ionospheric and tropospheric refractivity variations imposes fundamental limitations on the capabilities of these antennas and antenna systems, particularly on systems which must operate at low elevation angles. The purpose of this paper is to present numerical estimates of distortion imposed on signals passing through the atmosphere. Atmospheric models based on available literature are selected for this purpose.  相似文献   
8.
It has been hypothesized in this journal and elsewhere, based on surveys of published data from prebiotic synthesis experiments and carbonaceous meteorite analyses, that basic amino acids such as lysine and arginine were not abundant on prebiotic Earth. If the basic amino acids were incorporated only rarely into the first peptides formed in that environment, it is important to understand what protobiotic chemistry is possible in their absence. As an initial test of the hypothesis that basic amino acid negative [BAA(-)] proteins could have performed at least a subset of protobiotic chemistry, the current work reports on a survey of 13 archaeal and 13 bacterial genomes that has identified 61 modern gene sequences coding for known or putative proteins not containing arginine or lysine. Eleven of the sequences found code for proteins whose functions are well known and important in the biochemistry of modern microbial life: lysine biosynthesis protein LysW, arginine cluster proteins, copper ion binding proteins, bacterial flagellar proteins, and PE or PPE family proteins. These data indicate that the lack of basic amino acids does not prevent peptides or proteins from serving useful structural and biochemical functions. However, as would be predicted from fundamental physicochemical principles, we see no fossil evidence of prebiotic BAA(-) peptide sequences capable of interacting directly with nucleic acids.  相似文献   
9.
Gene 《飞碟探索》2009,(12):22-23
诺贝尔奖于2009年10月公布前,《荒诞年鉴》率先为诺贝尔奖暖身,2009年10月1日在哈佛大学桑德斯剧院举行搞筻诺贝尔奖颁奖典礼。得奖研究千奇百怪。包括发现取名宁的乳牛产量较高,在酒吧打架拿空酒瓶砸人杀伤力最强.或是能当作防毒面具的胸罩等。  相似文献   
10.
Life, as we know it, is based on carbon chemistry operating in an aqueous environment. Living organisms process chemicals, make copies of themselves, are autonomous and evolve in concert with the environment. All these characteristics are driven by, and operate through, carbon chemistry. The carbon chemistry of living systems is an exact branch of science and we have detailed knowledge of the basic metabolic and reproductive machinery of living organisms. We can recognise the residual biochemicals long after life has expired and otherwise lost most life-defining features. Carbon chemistry provides a tool for identifying extant and extinct life on Earth and, potentially, throughout the Universe. In recognizing that certain distinctive compounds isolable from living systems had related fossil derivatives, organic geochemists coined the term biological marker compound or biomarker (e.g. Eglinton et al. in Science 145:263–264, 1964) to describe them. In this terminology, biomarkers are metabolites or biochemicals by which we can identify particular kinds of living organisms as well as the molecular fossil derivatives by which we identify defunct counterparts. The terms biomarker and molecular biosignature are synonymous. A defining characteristic of terrestrial life is its metabolic versatility and adaptability and it is reasonable to expect that this is universal. Different physiologies operate for carbon acquisition, the garnering of energy and the storage and processing of information. As well as having a range of metabolisms, organisms build biomass suited to specific physical environments, habitats and their ecological imperatives. This overall ‘metabolic diversity’ manifests itself in an enormous variety of accompanying product molecules (i.e. natural products). The whole field of organic chemistry grew from their study and now provides tools to link metabolism (i.e. physiology) to the occurrence of biomarkers specific to, and diagnostic for, particular kinds of metabolism. Another characteristic of living things, also likely to be pervasive, is that an enormous diversity of large molecules are built from a relatively small subset of universal precursors. These include the four bases of DNA, 20 amino acids of proteins and two kinds of lipid building blocks. Third, life exploits the specificity inherent in the spatial, that is, the three-dimensional qualities of organic chemicals (stereochemistry). These characteristics then lead to some readily identifiable and measurable generic attributes that would be diagnostic as biosignatures. Measurable attributes of molecular biosignatures include:
  1. Enantiomeric excess
  2. Diastereoisomeric preference
  3. Structural isomer preference
  4. Repeating constitutional sub-units or atomic ratios
  5. Systematic isotopic ordering at molecular and intramolecular levels
  6. Uneven distribution patterns or clusters (e.g. C-number, concentration, δ 13C) of structurally related compounds.
In this paper we address details of the chemical and biosynthetic basis for these features, which largely arise as a consequence of construction from small, recurring sub-units. We also address how these attributes might become altered during diagenesis and planetary processing. Finally, we discuss the instrumental techniques and further developments needed to detect them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号