首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
航天技术   1篇
  2014年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Construction of lunar DEMs based on reflectance modelling   总被引:1,自引:0,他引:1  
Existing lunar DEMs obtained based on laser altimetry or photogrammetric image analysis are characterised by high large-scale accuracies while their lateral resolution is strongly limited by noise or interpolation artifacts. In contrast, image-based photometric surface reconstruction approaches reveal small-scale surface detail but become inaccurate on large spatial scales. The framework proposed in this study therefore combines photometric image information of high lateral resolution and DEM data of comparably low lateral resolution in order to obtain DEMs of high lateral resolution which are also accurate on large spatial scales. Our first approach combines an extended photoclinometry scheme and a shape from shading based method. A novel variational surface reconstruction method further increases the lateral resolution of the DEM such that it reaches that of the underlying images. We employ the Hapke IMSA and AMSA reflectance models with two different formulations of the single-particle scattering function, such that the single-scattering albedo of the surface particles and optionally the asymmetry parameter of the single-particle scattering function can be estimated pixel-wise. As our DEM construction methods require co-registered images, an illumination-independent image registration scheme is developed. An evaluation of our framework based on synthetic image data yields an average elevation accuracy of the constructed DEMs of better than 20 m as long as the correct reflectance model is assumed. When comparing our DEMs to LOLA single track data, absolute elevation accuracies around 30 m are obtained for test regions that cover an elevation range of several thousands of metres. The proposed illumination-independent image registration method yields subpixel accuracy even in the presence of 3D perspective distortions. The pixel-wise reflectance parameters estimated simultaneously with the DEM reflect compositional contrasts between different surface units. Specifically, the detected variations of the parameter of the single-particle scattering function indicate small-scale variations of the regolith particle size, possibly as a result of differences in soil maturity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号